import torch import torch.nn as nn import torch.nn.functional as F import math class TransNAR(nn.Module): def __init__(self, input_dim, output_dim, embed_dim, num_heads, num_layers, ffn_dim, dropout=0.1): super(TransNAR, self).__init__() # Camada de Embedding self.embedding = nn.Linear(input_dim, embed_dim) self.pos_encoding = PositionalEncoding(embed_dim, dropout) # Camadas Transformer self.transformer_layers = nn.ModuleList([ TransformerLayer(embed_dim, num_heads, ffn_dim, dropout) for _ in range(num_layers) ]) # Neural Algorithmic Reasoner (NAR) self.nar = NAR(embed_dim) # Decodificador self.decoder = nn.Linear(embed_dim * 2, output_dim) # Camada de normalização final self.final_norm = nn.LayerNorm(output_dim) def forward(self, x): # Embedding e codificação posicional x = self.embedding(x) x = self.pos_encoding(x) # Camadas Transformer for layer in self.transformer_layers: x = layer(x) # Neural Algorithmic Reasoner nar_output = self.nar(x) # Concatenar saída do Transformer e do NAR combined = torch.cat([x, nar_output], dim=-1) # Decodificação output = self.decoder(combined) # Normalização final output = self.final_norm(output) return output class TransformerLayer(nn.Module): def __init__(self, embed_dim, num_heads, ffn_dim, dropout=0.1): super(TransformerLayer, self).__init__() self.self_attn = nn.MultiheadAttention(embed_dim, num_heads, dropout=dropout) self.ffn = nn.Sequential( nn.Linear(embed_dim, ffn_dim), nn.ReLU(), nn.Linear(ffn_dim, embed_dim) ) self.norm1 = nn.LayerNorm(embed_dim) self.norm2 = nn.LayerNorm(embed_dim) self.dropout = nn.Dropout(dropout) def forward(self, x): # Atenção attn_output, _ = self.self_attn(x, x, x) x = x + self.dropout(attn_output) x = self.norm1(x) # Feedforward ffn_output = self.ffn(x) x = x + self.dropout(ffn_output) x = self.norm2(x) return x class NAR(nn.Module): def __init__(self, embed_dim): super(NAR, self).__init__() self.reasoning_layers = nn.Sequential( nn.Linear(embed_dim, embed_dim * 2), nn.ReLU(), nn.Linear(embed_dim * 2, embed_dim), nn.Tanh() ) self.gru = nn.GRU(embed_dim, embed_dim, batch_first=True) self.output_layer = nn.Linear(embed_dim, embed_dim) # Nova camada para ajustar a saída def forward(self, x): reasoned = self.reasoning_layers(x) output, _ = self.gru(reasoned) output = self.output_layer(output) # Ajustar a dimensão return output class PositionalEncoding(nn.Module): def __init__(self, embed_dim, dropout=0.1, max_len=5000): super(PositionalEncoding, self).__init__() self.dropout = nn.Dropout(p=dropout) # Inicializa o tensor de codificação posicional pe = torch.zeros(max_len, embed_dim) position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1) div_term = torch.exp(torch.arange(0, embed_dim, 2).float() * (-math.log(10000.0) / embed_dim)) pe[:, 0::2] = torch.sin(position * div_term) pe[:, 1::2] = torch.cos(position * div_term) pe = pe.unsqueeze(0).transpose(0, 1) self.register_buffer('pe', pe) def forward(self, x): x = x + self.pe[:x.size(0), :].to(x.device) return self.dropout(x) # Exemplo de uso input_dim = 100 output_dim = 50 embed_dim = 256 num_heads = 8 num_layers = 6 ffn_dim = 1024 model = TransNAR(input_dim, output_dim, embed_dim, num_heads, num_layers, ffn_dim) input_data = torch.randn(32, 100, input_dim) # Corrigido para incluir a dimensão de embedding output = model(input_data) print(output.shape) # Deve imprimir torch.Size([32, 100, 50])