File size: 28,194 Bytes
5581c1c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 |
"""
# RetNPhi: Byte-Level Hybrid of Phi-3.5 and RetNet
RetNPhi is an experimental architecture that transforms Phi-3.5 into a byte-level language model, incorporating RetNet-inspired mechanisms. This innovative approach enables the model to process raw byte sequences, allowing for universal file type handling.
## Key Features:
1. **Byte-Level Processing**: Operates directly on raw byte sequences, enabling universal application to any file type.
2. **RetNet Integration**: Incorporates RetNet's multi-scale exponential decay and group normalization for efficient long-range dependency modeling.
3. **Dual-mode Processing**: Supports parallel mode for efficient training and recurrent mode for inference.
4. **Selective Fine-tuning**: Trains only specific layers (e.g., token embedding, post-attention layer normalizations) while keeping most of the original Phi-3.5 weights frozen.
5. **Weight-Decomposed Low-Rank Adaptation (DoRA)**: Applies DoRA to self-attention output projections for efficient adaptation while preserving pretrained knowledge.
## Implementation Strategy:
- **Weight Reuse**: Utilizes frozen weights from the original Phi-3.5 model for most layers.
- **Flexible DoRA Application**: Allows configuration of which layers and targets to apply DoRA.
- **Configurable Architecture**: Supports both retention-based and original attention mechanisms.
- **Untied Embeddings Option**: Provides the ability to use separate input and output embeddings.
## Training and Inference:
- Implements efficient training loops with customizable learning rate schedules.
- Supports both training from scratch and fine-tuning from a checkpoint.
- Provides a generation function for text completion tasks.
## Goals:
- Explore the potential of retention-like mechanisms in a byte-level Phi architecture.
- Leverage dual-mode processing for efficient training and inference.
- Develop a universal model capable of processing any file type.
Note: This is a highly experimental implementation, designed for research and exploration rather than production use. It demonstrates the potential of combining pretrained models with novel architectures and efficient fine-tuning techniques.
Author: Josef Albers
Date: Aug 28, 2024
"""
import glob
import json
import math
import time
from datetime import datetime
from types import SimpleNamespace
import fire
import mlx.core as mx
import mlx.nn as nn
import mlx.optimizers as optim
import numpy as np
from huggingface_hub import snapshot_download
from mlx.utils import tree_flatten, tree_unflatten
from datasets import load_dataset
class Tokenizer:
def __init__(self, file_path=None):
if file_path is None:
self.vocab = list(range(256))
else:
with open(file_path, 'r') as f:
content = f.read().lower().encode('utf-8')
self.vocab = sorted(set(content))
self.vocab_size = len(self.vocab)
self.byte_to_index = {byte: index for index, byte in enumerate(self.vocab)}
self.index_to_byte = {index: byte for index, byte in enumerate(self.vocab)}
def encode(self, text):
byte_seq = text.encode('utf-8')
return [self.byte_to_index[byte] for byte in byte_seq]
def decode(self, indices):
byte_seq = bytes(self.index_to_byte[index] for index in indices)
return byte_seq.decode('utf-8', errors='ignore')
class SuRoPE(nn.Module):
def __init__(self, config):
super().__init__()
self.dim = config.hidden_size // config.num_attention_heads
self.original_max_position_embeddings = config.original_max_position_embeddings
self.rope_theta = config.rope_theta
self.scaling_factor = math.sqrt(1 + math.log(config.max_position_embeddings / config.original_max_position_embeddings) / math.log(config.original_max_position_embeddings))
self._long_factor = mx.array(config.rope_scaling["long_factor"], dtype=mx.float32)
self._short_factor = mx.array(config.rope_scaling["short_factor"], dtype=mx.float32)
def __call__(self, q, k, position_ids):
cos, sin = self._get_cos_sin(position_ids)
q = (q * cos) + (self._rotate_half(q) * sin)
k = (k * cos) + (self._rotate_half(k) * sin)
return q, k
def _get_cos_sin(self, position_ids):
su_factor = self._short_factor
position_ids_expanded = position_ids[:, None, :]
inv_freq = 1.0 / (su_factor * self.rope_theta**(mx.arange(0, self.dim, 2, dtype=mx.float32) / self.dim))
inv_freq_expanded = mx.repeat(inv_freq[None, :, None], position_ids.shape[0], axis=0)
freqs = (inv_freq_expanded @ position_ids_expanded).transpose(0, 2, 1)
emb = mx.concatenate([freqs, freqs], axis=-1)
cos = mx.expand_dims(mx.cos(emb) * self.scaling_factor, axis=1)
sin = mx.expand_dims(mx.sin(emb) * self.scaling_factor, axis=1)
return cos, sin
def _rotate_half(self, x):
midpoint = x.shape[-1] // 2
x1, x2 = x[..., :midpoint], x[..., midpoint:]
return mx.concatenate([-x2, x1], axis=-1)
class Phi3Attention(nn.Module):
def __init__(self, config):
super().__init__()
dim = config.hidden_size
self.n_heads = n_heads = config.num_attention_heads
self.n_kv_heads = n_kv_heads = config.num_key_value_heads
self.num_hidden_layers = config.num_hidden_layers
self.head_dim = head_dim = config.hidden_size // n_heads
self.scale = head_dim**-0.5
chop_1 = self.n_heads * self.head_dim
chop_2 = chop_1 + self.n_kv_heads * self.head_dim
self.chop = [chop_1, chop_2]
op_size = n_heads * head_dim + 2 * (n_kv_heads * head_dim)
self.qkv_proj = nn.Linear(dim, op_size, bias=False)
self.o_proj = nn.Linear(n_heads * head_dim, dim, bias=False)
self.rope = SuRoPE(config)
def __call__(self, x, position_ids, attention_mask, cache, use_recurrent_mode):
B, L, _ = x.shape
qkv = self.qkv_proj(x)
q, k, v = mx.split(qkv, self.chop, axis=-1)
q = q.reshape(B, L, self.n_heads, -1).transpose(0, 2, 1, 3)
k = k.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3)
v = v.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3)
if cache is None:
position_ids = mx.arange(q.shape[2], dtype=mx.float32)[None] if position_ids is None else position_ids
q, k = self.rope(q,k,position_ids)
mask = mx.triu(mx.full((v.shape[2], v.shape[2]), -mx.inf), k=1)
if attention_mask is not None:
mask += mx.where(attention_mask[:, :, None]*attention_mask[:, None, :]==1, 0, -mx.inf)
mask = mx.expand_dims(mask, 1)
else:
mask = mask[None, None]
else:
past_k, past_v, past_p, past_m = cache
position_ids = past_p[:,-1:]+1
mask = mx.pad(past_m[:,:,-1:,:], ((0,0),(0,0),(0,0),(0,1)))
q, k = self.rope(q, k, position_ids)
k = mx.concatenate([past_k, k], axis=2)
v = mx.concatenate([past_v, v], axis=2)
cache = (k, v, position_ids, mask)
w = (q * self.scale) @ k.transpose(0, 1, 3, 2)
w += mask
w = mx.softmax(w, axis=-1)
o = w @ v
o = o.transpose(0, 2, 1, 3).reshape(B, L, -1)
return self.o_proj(o).astype(x.dtype), cache
class Phi3Retention(nn.Module):
def __init__(self, config):
super().__init__()
self.dim = dim = config.hidden_size
self.n_heads = n_heads = config.num_attention_heads
self.n_kv_heads = n_kv_heads = config.num_key_value_heads
self.num_hidden_layers = config.num_hidden_layers
self.head_dim = head_dim = config.hidden_size // n_heads
self.scale = head_dim**-0.5
chop_1 = self.n_heads * self.head_dim
chop_2 = chop_1 + self.n_kv_heads * self.head_dim
self.chop = [chop_1, chop_2]
op_size = n_heads * head_dim + 2 * (n_kv_heads * head_dim)
self.qkv_proj = nn.Linear(dim, op_size, bias=False)
self.o_proj = nn.Linear(n_heads * head_dim, dim, bias=False)
self.rope = SuRoPE(config)
xmin, xmax = math.log(1 / 32), math.log(1 / 512)
x = mx.linspace(xmin, xmax, num=n_heads)
self._gamma = 1 - x.exp()
self.gn = nn.GroupNorm(num_groups=head_dim, dims=-1, affine=False)
def __call__(self, x, position_ids, attention_mask, cache, use_recurrent_mode):
if use_recurrent_mode:
return self.recurrent_mode(x, cache)
B, L, _ = x.shape
qkv = self.qkv_proj(x)
q, k, v = mx.split(qkv, self.chop, axis=-1)
q = q.reshape(B, L, self.n_heads, -1).transpose(0, 2, 1, 3)
k = k.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3)
v = v.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3)
position_ids = mx.arange(q.shape[2], dtype=mx.float32)[None] if position_ids is None else position_ids
q, k = self.rope(q,k,position_ids)
cache = None
w = (q * self.scale) @ k.transpose(0, 1, 3, 2)
w = w * self._decay(L)
o = w @ v
o = o.transpose(0, 2, 1, 3).reshape(B*L, -1)
o = self.gn(o).reshape(B, L, -1)
return self.o_proj(o).astype(x.dtype), cache
def recurrent_mode(self, x, cache):
if cache is None:
s = mx.zeros((1, 32, 96, 96))
n = 0
else:
s, n = cache
qkv = self.qkv_proj(x)
q, k, v = mx.split(qkv, self.chop, axis=-1)
q = q.reshape(1, 1, self.n_heads, -1).transpose(0, 2, 1, 3)
k = k.reshape(1, 1, self.n_kv_heads, -1).transpose(0, 2, 1, 3)
v = v.reshape(1, 1, self.n_kv_heads, -1).transpose(0, 2, 1, 3)
position_ids = mx.array([[n]])
q, k = self.rope(q,k,position_ids)
k = k * self.scale
s = self._gamma[None, :, None, None] * s + (k.transpose(0, 1, 3, 2) @ v)
o = q @ s
o = o.transpose(0, 2, 1, 3).reshape(1, -1)
o = self.gn(o).reshape(1, 1, -1)
o = self.o_proj(o).astype(x.dtype)
return o, (s, n+1)
def _decay(self, sequence_length):
n = mx.arange(sequence_length)[:,None]
m = mx.arange(sequence_length)[None]
D = (self._gamma[:, None, None] ** (n-m)) * (n >= m)
return D
class Phi3MLP(nn.Module):
def __init__(self, config):
super().__init__()
self.gate_up_proj = nn.Linear(config.hidden_size, 2 * config.intermediate_size, bias=False)
self.down_proj = nn.Linear(config.intermediate_size, config.hidden_size, bias=False)
def __call__(self, x):
x = self.gate_up_proj(x)
gate, x = mx.split(x, 2, axis=-1)
return self.down_proj(nn.silu(gate) * x)
class Phi3DecoderLayer(nn.Module):
def __init__(self, config):
super().__init__()
if config.use_retention:
self.self_attn = Phi3Retention(config)
else:
self.self_attn = Phi3Attention(config)
self.mlp = Phi3MLP(config)
self.input_layernorm = nn.RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.post_attention_layernorm = nn.RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
def __call__(self, x, position_ids, attention_mask, cache, use_recurrent_mode):
r, cache = self.self_attn(self.input_layernorm(x), position_ids, attention_mask, cache, use_recurrent_mode)
h = x + r
r = self.mlp(self.post_attention_layernorm(h))
return h + r, cache
class Phi3Model(nn.Module):
def __init__(self, config):
super().__init__()
self.embed_new = nn.Embedding(config.vocab_size, config.hidden_size)
self.layers = [Phi3DecoderLayer(config) for _ in range(config.num_hidden_layers)]
self.norm = nn.RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
def __call__(self, input_ids, pixel_values, image_sizes, position_ids, attention_mask, cache, use_recurrent_mode):
x = self.embed_new(input_ids)
cache = [None]*len(self.layers) if cache is None else cache
for i, l in enumerate(self.layers):
x, cache[i] = l(x, position_ids, attention_mask, cache[i], use_recurrent_mode)
return self.norm(x), cache
class Phi3ForCausalLM(nn.Module):
def __init__(self, config):
super().__init__()
self.model = Phi3Model(config)
if config.untie_embedding:
self.lm_new = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
self.untie = True
else:
self.untie = False
def __call__(self, input_ids, pixel_values=None, image_sizes=None, position_ids=None, attention_mask=None, cache=None, use_recurrent_mode=False):
x, cache = self.model(input_ids, pixel_values, image_sizes, position_ids, attention_mask, cache, use_recurrent_mode)
if self.untie:
return self.lm_new(x), cache
return self.model.embed_new.as_linear(x), cache
@property
def layers(self):
return self.model.layers
class DoRALinear(nn.Module):
@staticmethod
def from_linear(linear, r, alpha, scale, dropout):
output_dims, input_dims = linear.weight.shape
if isinstance(linear, nn.QuantizedLinear):
input_dims *= 32 // linear.bits
lora_lin = DoRALinear(input_dims=input_dims, output_dims=output_dims, r=r, alpha=alpha, scale=scale, dropout=dropout)
lora_lin.linear = linear
return lora_lin
def __init__(self, input_dims, output_dims, r, alpha, scale, dropout, bias=False):
super().__init__()
self.linear = nn.Linear(input_dims, output_dims, bias=bias)
self.dropout = nn.Dropout(p=dropout)
self.scale = scale * (alpha / r)
scale = 1 / math.sqrt(input_dims)
self.lora_a = mx.random.uniform(low=-scale, high=scale, shape=(input_dims, r))
self.lora_b = mx.zeros(shape=(r, output_dims))
self.m = mx.linalg.norm(self._dequantized_weight(), axis=1).astype(mx.float32)
def _dequantized_weight(self):
weight = self.linear.weight
if isinstance(self.linear, nn.QuantizedLinear):
weight = mx.dequantize(weight, self.linear.scales, self.linear.biases, self.linear.group_size, self.linear.bits)
return weight
def __call__(self, x):
y = self.linear(x)
z = (self.dropout(x) @ self.lora_a) @ self.lora_b
z = y + (self.scale * z)
adapted = self._dequantized_weight() + (self.scale * self.lora_b.T) @ self.lora_a.T
denom = mx.stop_gradient(mx.linalg.norm(adapted, axis=1))
z = (self.m / denom) * z
return z.astype(x.dtype)
def linear_to_lora_layers(model, lora_layers, lora_targets, lora_rank, lora_scale, lora_dropout):
if lora_layers == 'all':
lora_layers = model.layers
elif isinstance(lora_layers, int):
lora_layers = model.layers[-lora_layers:]
elif isinstance(lora_layers, list):
lora_layers = [model.layers[i] for i in lora_layers]
else:
raise ValueError("Invalid type for lora_layers. Expected int (number of layers) or list (layer indices or names).")
def to_lora(layer):
return DoRALinear.from_linear(layer, r=lora_rank, alpha=lora_rank, scale=lora_scale, dropout=lora_dropout)
for l in lora_layers:
lora_layers = [(k, to_lora(m)) for k, m in l.named_modules() if k in lora_targets]
l.update_modules(tree_unflatten(lora_layers))
def load_base_model(model_cfg, init=False):
model_id='microsoft/Phi-3.5-mini-instruct'
model_path = snapshot_download(model_id, allow_patterns=["*.safetensors", "config.json"])
with open(f"{model_path}/config.json", "r") as f:
config = json.load(f)
config = config|model_cfg
model_config = SimpleNamespace(**config)
model = Phi3ForCausalLM(model_config)
model_weight = [(k, v) for wf in glob.glob(f"{model_path}/*.safetensors") for k, v in mx.load(wf).items()]
model.load_weights(model_weight, strict=False)
model.set_dtype(mx.float32)
if init:
init_fn_embed = nn.init.normal(mean=-0.000453949, std=0.0344238)
model.apply_to_modules(lambda k, v: v.apply(init_fn_embed) if k.endswith('embed_new') else None)
if model_config.untie_embedding:
init_fn_lm = nn.init.normal(mean=-0.000231743, std=0.043457)
model.apply_to_modules(lambda k, v: v.apply(init_fn_lm) if k.endswith('lm_new') else None)
class_predicate = lambda k, m: hasattr(m, "to_quantized") and not k.endswith('new')
nn.quantize(model, 64, 4, class_predicate)
mx.eval(model.parameters())
return model
def load_model_for_training(lora_cfg, model_cfg, thaws, from_path=None):
model = load_base_model(model_cfg, init=False)
if from_path:
model.load_weights(from_path, strict=False)
model.freeze()
if len(lora_cfg['targets']) > 1:
linear_to_lora_layers(model, lora_layers=lora_cfg['layers'], lora_targets=lora_cfg['targets'], lora_rank=lora_cfg['rank'], lora_scale=lora_cfg['scale'], lora_dropout=lora_cfg['dropout'])
model.apply_to_modules(lambda k, v: v.unfreeze() if any(k.endswith(t) for t in thaws) else None)
mx.eval(model.parameters())
# print("Trainable parameters:", [i[0] for i in tree_flatten(model.trainable_parameters())])
model.train()
return model
def load_model_for_inference(lora_cfg, model_cfg):
model = load_base_model(model_cfg, init=False)
if len(lora_cfg['targets']) > 1:
linear_to_lora_layers(model, lora_layers=lora_cfg['layers'], lora_targets=lora_cfg['targets'], lora_rank=lora_cfg['rank'], lora_scale=lora_cfg['scale'], lora_dropout=lora_cfg['dropout'])
_path = 'trained_retnphi.safetensors' if model_cfg['use_retention'] else 'trained_orgnphi.safetensors'
model.load_weights(_path, strict=False)
mx.eval(model.parameters())
model.eval()
return model
def generate(prompt, lora_cfg, model_cfg, max_tokens=50, verbose = True):
model = load_model_for_inference(lora_cfg=lora_cfg, model_cfg=model_cfg)
input_ids = mx.array(tokenizer.encode(prompt))
if model_cfg['use_retention']:
cache = None
for i in input_ids:
logits, cache = model(i[None, None], cache=cache, use_recurrent_mode=True)
else:
logits, cache = model(input_ids[None])
token = mx.argmax(logits[:,-1,:], axis=-1)
mx.eval(token, cache)
list_tokens = token.tolist()
for i in range(max_tokens):
logits, cache = model(token[None], cache=cache, use_recurrent_mode=True)
token = mx.argmax(logits[:,-1,:], axis=-1)
mx.eval(token, cache)
list_tokens += token.tolist()
if tokenizer.decode(list_tokens[-2:]) == '\n\n':
break
output = tokenizer.decode(list_tokens)
if verbose:
print(f'{prompt=} + {output=}\n-> {prompt+output}')
del model
return output
def train_gsm(learning_rates, num_epochs, batch_size, seq_length, lora_cfg, model_cfg, thaws, take, from_path=None):
def load_gsm_data(tokenizer, is_tiny=True):
if is_tiny:
data = load_dataset("TinyGSM/TinyGSM")["train"]
if take:
data = data.take(take)
data = data.filter(lambda x: len(x['question']) < 100 and ':' not in x['question'] and '-' not in x['question'] and "'" not in x['code'] and '\n result =' in x['code'])
split_point = int(len(data) * 0.8)
train_data = data.select(range(split_point))
eval_data = data.select(range(split_point, len(data)))
def format_example(example):
code_raw = example['code']
start = code_raw.rfind('\n """')
if start == -1:
print('Wrong format to start')
return code_raw.strip()
start = start + 8
end = code_raw.rfind('\n result =')
if end == -1:
print('Wrong format to end')
end = len(code_raw)
code_block = code_raw[start:end]
code_lines = code_block.split('\n ')
formatted_code = '\n'.join(line.rstrip() for line in code_lines if line.strip())
formatted_code = '\n' + formatted_code.strip() + '\n\n'
result = (example['question'].strip(), formatted_code)
return result
else:
dataset = load_dataset("openai/gsm8k", "main")
train_data = dataset["train"]
eval_data = dataset["test"]
def format_example(example):
return (example['question'].strip(), '\n'+example['answer'].strip()+'\n\n')
train_formatted = [format_example(ex) for ex in train_data]
eval_formatted = [format_example(ex) for ex in eval_data]
return train_formatted, eval_formatted
def create_batches(data, tokenizer, batch_size, seq_length):
def _encode(x):
return [tokenizer.encode(i) for i in x]
encoded_data = [_encode(x) for x in data]
encoded_data = [x for x in encoded_data if len(x[0]+x[1]) <= seq_length+1]
if batch_size is None:
batch_size = min(len(encoded_data), 64)
else:
encoded_data = encoded_data[:(len(encoded_data) // batch_size) * batch_size]
np.random.shuffle(encoded_data)
for i in range(0, len(encoded_data), batch_size):
batch = encoded_data[i:i+batch_size]
max_len = min(max(len(q+a)-1 for q, a in batch), seq_length)
x_batch = []
y_batch = []
mask_batch = []
for q, a in batch:
combined = (q+a)[:max_len+1]
x = combined[:-1]
y = combined[1:]
pad_length = max_len - len(x)
x = x + [0] * pad_length
y = y + [0] * pad_length
mask = [False] * (len(q)-1) + [True] * (len(a)) + [False] * (pad_length)
x_batch.append(x)
y_batch.append(y)
mask_batch.append(mask)
yield mx.array(x_batch), mx.array(y_batch), mx.array(mask_batch)
def loss_fn(model, X, y, mask):
logits, _ = model(X)
logits = logits.astype(mx.float32)
ce = nn.losses.cross_entropy(logits, y, reduction='none')
masked_loss = ce * mask
return masked_loss.sum(), mask.sum()
def evaluate(model, data, tokenizer, seq_length):
model.eval()
total_loss = 0
total_samples = 0
for X, y, mask in create_batches(data, tokenizer, None, seq_length):
loss, ntoks = loss_fn(model, X, y, mask)
total_loss += loss.item()
total_samples += ntoks.item()
return total_loss / total_samples if total_samples > 0 else -1
def get_optimizer(train_data):
num_batches_per_epoch = len(list(create_batches(train_data, tokenizer, batch_size, seq_length)))
print(f'{num_batches_per_epoch=}')
num_steps = num_epochs * num_batches_per_epoch
num_warmup = num_steps // 10
max_lr, min_lr = learning_rates
if num_warmup > 2:
warmup = optim.linear_schedule(min_lr*0.1, max_lr, steps=num_warmup)
cosine = optim.cosine_decay(max_lr, num_steps - num_warmup, min_lr)
lr_schedule = optim.join_schedules([warmup, cosine], [num_warmup])
else:
lr_schedule = optim.cosine_decay(max_lr, num_steps, min_lr)
return optim.Lion(learning_rate=lr_schedule), num_steps
for arg_name in sorted(locals()):
if arg_name != 'self':
arg_value = locals()[arg_name]
if not callable(arg_value):
print(f"{arg_name}: {arg_value}")
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
print(f'--- {timestamp} ---')
train_data, eval_data = load_gsm_data(tokenizer=tokenizer)
model = load_model_for_training(lora_cfg=lora_cfg, model_cfg=model_cfg, thaws=thaws)
optimizer, num_steps = get_optimizer(train_data)
loss_and_grad_fn = nn.value_and_grad(model, loss_fn)
mx.eval(model, optimizer)
metrics = {
'steps': [],
'learning_rates': [],
'all_train_losses': [],
'avg_train_losses': [],
'val_losses': [],
'trained_toks': [],
}
step = 0
trained_toks = 0
losses = []
tic = time.perf_counter()
for epoch in range(num_epochs):
for X, y, loss_mask in create_batches(data=train_data, tokenizer=tokenizer, batch_size=batch_size, seq_length=seq_length):
model.train()
(loss, ntoks), grads = loss_and_grad_fn(model, X, y, loss_mask)
optimizer.update(model, grads)
mx.eval(loss, ntoks, model, optimizer)
losses.append(loss.item())
trained_toks += ntoks.item()
step += 1
if (step % (num_steps // 30) == 0):
avg_train_loss = np.mean(losses)
lr = optimizer.learning_rate.item()
val_loss = evaluate(model=model, data=eval_data, tokenizer=tokenizer, seq_length=seq_length)
print(f"{avg_train_loss:8.4f} ({val_loss:6.4f}) @ {step//(num_steps//30):2}/30 w/ {lr:.2e} ({time.perf_counter() - tic:.2f} sec)")
metrics['val_losses'].append(val_loss)
# print(f"{avg_train_loss:8.4f} @ {step//(num_steps//30):2}/30 w/ {lr:.2e} ({time.perf_counter() - tic:.2f} sec)")
tic = time.perf_counter()
metrics['steps'].append(step)
metrics['learning_rates'].append(lr)
metrics['all_train_losses'].extend(losses)
metrics['avg_train_losses'].append(avg_train_loss)
metrics['trained_toks'].append(trained_toks)
losses = []
trained_toks = 0
_path = f'trained_retnphi.safetensors' if model_cfg['use_retention'] else f'trained_orgnphi.safetensors'
mx.save_safetensors(_path, dict(tree_flatten(model.trainable_parameters())))
log = {
'args': {
'learning_rates': learning_rates,
'num_epochs': num_epochs,
'batch_size': batch_size,
'seq_length': seq_length,
'lora_cfg': lora_cfg,
'model_cfg': model_cfg,
'thaws': thaws,
'from_path': from_path
},
'metrics': metrics
}
with open(f'train_log_{timestamp}.json', 'w') as f:
json.dump(log, f, indent=2)
del model
tokenizer = Tokenizer()
def main(take=1000, layers='all', targets=["self_attn.o_proj"], thaws=['new', 'post_attention_layernorm'], rank=32, scale=0.1, dropout=0.0, lr_max=1e-4, lr_min=1e-5, num_epochs=90, batch_size=1, seq_length=256, vocab_size=256, use_retention=True, untie_embedding=True, prompt='There are 8 candies in a carton. How many candies will be in 5 cartons?'):
lora_cfg = dict(layers=layers, targets=targets, rank=rank, scale=scale, dropout=dropout)
model_cfg = dict(vocab_size=vocab_size, use_retention=use_retention, untie_embedding=untie_embedding)
train_gsm(learning_rates=(lr_max, lr_min), num_epochs=num_epochs, batch_size=batch_size, seq_length=seq_length, lora_cfg=lora_cfg, model_cfg=model_cfg, thaws=thaws, take=take)
generate(prompt=prompt, lora_cfg=lora_cfg, model_cfg=model_cfg, max_tokens=(seq_length-len(prompt)))
if __name__ == "__main__":
main(take=None, num_epochs=3) # -> 240916
main(take=None, num_epochs=3, untie_embedding=False)
main(take=None, num_epochs=3, use_retention=False)
main(take=None, num_epochs=3, untie_embedding=False, use_retention=False)
# fire.Fire(main)
# Output:
# 388.7268 @ 1/30 w/ 3.36e-05 (64.73 sec)
# ...
# 4.3768 @ 30/30 w/ 1.00e-05 (64.36 sec)
# prompt='There are 8 candies in a carton. How many candies will be in 5 cartons?' + output='\ncandies_in_carton = 8 \nnumber_of_cartons = 5\ntotal_no_of_candies = candies_in_carton * number_of_cartons\n\n'
# -> There are 8 candies in a carton. How many candies will be in 5 cartons?
# candies_in_carton = 8
# number_of_cartons = 5
# total_no_of_candies = candies_in_carton * number_of_cartons
|