leaderboard-pr-bot's picture
Adding Evaluation Results
ee9e7b8 verified
|
raw
history blame
6.3 kB
metadata
license: llama3.1
library_name: transformers
tags:
  - mergekit
  - merge
model-index:
  - name: Llama-3.1-SuperNova-8B-Lite_TIES_with_Base
    results:
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: IFEval (0-Shot)
          type: HuggingFaceH4/ifeval
          args:
            num_few_shot: 0
        metrics:
          - type: inst_level_strict_acc and prompt_level_strict_acc
            value: 80.96
            name: strict accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Joseph717171/Llama-3.1-SuperNova-8B-Lite_TIES_with_Base
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: BBH (3-Shot)
          type: BBH
          args:
            num_few_shot: 3
        metrics:
          - type: acc_norm
            value: 31.47
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Joseph717171/Llama-3.1-SuperNova-8B-Lite_TIES_with_Base
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MATH Lvl 5 (4-Shot)
          type: hendrycks/competition_math
          args:
            num_few_shot: 4
        metrics:
          - type: exact_match
            value: 15.56
            name: exact match
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Joseph717171/Llama-3.1-SuperNova-8B-Lite_TIES_with_Base
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: GPQA (0-shot)
          type: Idavidrein/gpqa
          args:
            num_few_shot: 0
        metrics:
          - type: acc_norm
            value: 7.94
            name: acc_norm
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Joseph717171/Llama-3.1-SuperNova-8B-Lite_TIES_with_Base
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MuSR (0-shot)
          type: TAUR-Lab/MuSR
          args:
            num_few_shot: 0
        metrics:
          - type: acc_norm
            value: 10.74
            name: acc_norm
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Joseph717171/Llama-3.1-SuperNova-8B-Lite_TIES_with_Base
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MMLU-PRO (5-shot)
          type: TIGER-Lab/MMLU-Pro
          config: main
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 32.01
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Joseph717171/Llama-3.1-SuperNova-8B-Lite_TIES_with_Base
          name: Open LLM Leaderboard

Llama-3.1-SuperNova-Lite_TIES_with_Base

This is a merge of pre-trained language models created using mergekit.

Merge Details/Method

This is a merge of arcee-ai/Llama-3.1-SuperNova-Lite with its base meta-llama/Llama-3.1-8B (the base model being: the model which the instruct model was fine-tuned on - even though in our case, arcee-ai/Llama-3.1-SuperNova-Lite, was fine-tuned, etc on top of meta-llama/Llama-3.1-8B-Instruct and not directly on top of meta-llama/Llama-3.1-8B)

This model was merged using the TIES merge method using meta-llama/Llama-3.1-8B as a base.

The merge was inspired by RomboDawg's (Replete-AI) TIES merge of Qwen/Qwen2.5-7B-Instruct with its base Qwen/Qwen2.5-7B, which topped the OpenLLM Learderboard for the highest Average score for a 7B parameter model.

After experimenting and discussing/researching the merge with Rombodawg, I looked into mergekit's TIES merge method some more, which led me to find a pertinent parameter that we weren't utilizing for our TIES merge: density. I decided to use density along with the weight parameter to see if we could restore some of the instruction following that our merges seemed to lack in comparison to the original Instruct model. The resulant merges turned out to be great! By using the density parameter along with the weight parameter, we were able to restore more of the Instruction following which was diminished and/or not present when solely using the weight parameter for our TIES merge.

The way this works is: the Instruct model is TIES merged with the base model, with the weight = 1 and density = 1. After the merge is complete, the merge's .json config files (excluding 'model.safetensors.index.json') are replaced with the original Instruct's .json config files.

Models Merged

The following models were included in the merge:

  • /Users/jsarnecki/opt/Workspace/arcee-ai/Llama-3.1-SuperNova-Lite

Configuration

The following YAML configuration was used to produce this model:

models:
  - model: "/Users/jsarnecki/opt/Workspace/arcee-ai/Llama-3.1-SuperNova-Lite"
    parameters:
      weight: 1
      density: 1

  - model: "/Users/jsarnecki/opt/Workspace/arcee-ai/Llama-3.1-SuperNova-Lite"
    parameters:
      weight: 1
      density: 1

merge_method: ties
base_model: "/Users/jsarnecki/opt/Workspace/meta-llama/Llama-3.1-8B"
parameters:
  density: 1
  normalize: true
  int8_mask: true
dtype: bfloat16

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 29.78
IFEval (0-Shot) 80.96
BBH (3-Shot) 31.47
MATH Lvl 5 (4-Shot) 15.56
GPQA (0-shot) 7.94
MuSR (0-shot) 10.74
MMLU-PRO (5-shot) 32.01