{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x79d2f431b9a0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x79d2f431ba30>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x79d2f431bac0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x79d2f431bb50>", "_build": "<function ActorCriticPolicy._build at 0x79d2f431bbe0>", "forward": "<function ActorCriticPolicy.forward at 0x79d2f431bc70>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x79d2f431bd00>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x79d2f431bd90>", "_predict": "<function ActorCriticPolicy._predict at 0x79d2f431be20>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x79d2f431beb0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x79d2f431bf40>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x79d2f4320040>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x79d298060900>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1730685971263228426, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAMDskT08n+w+/JHFu+ObQL/E2oA90ssYvQAAAAAAAAAAJrbOPcNFQbq3t0E14vypMDbwFjuMSUy0AACAPwAAgD/zPmo+G0mePs5Gkr5vwAe/uCbiut3P3r0AAAAAAAAAAO21Az5F9IU/exvKPkPCUb8ENIg+huEfPgAAAAAAAAAARi1jPuWBoD994ug+G+4gv1zgrD6OxGo+AAAAAAAAAADzxLo9hWO6uzNwa7ySfL88Wp0qPQddor0AAIA/AACAP01Wcr04Zu27SivJPD7F6DwFsOw8s4p1PQAAgD8AAIA/Zu9LvijIsj1GqqM+9cOXvnSQ/DzKfQM9AAAAAAAAAADGcG8+8LcoP9CELT2h6Ae/UA91Pro9EL0AAAAAAAAAAGZd17xi2Lk/80S7vkPTOD4h6Wo8ojnluwAAAAAAAAAA9j5cvr8MlT+G9Q6/B14kvwbR2r6Id2S+AAAAAAAAAABmHxe9SBmMuh5p4D1Etdq4it1tu10q1LcAAIA/AACAP+DXE75NH2Y/XQaAvh2GLL/9EaW+s36IvQAAAAAAAAAAZmpePVwIVzvtWHa9tAsYvl2ECD1Be4G9AAAAAAAAAAAmZ9C91c8tP3LwjL1Q1Dq/rI0OvhqC4LwAAAAAAAAAAEDrOD+jIZ6+ammzPgkZBL7AkvC+LCJBPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV5AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHMPtqcmSheMAWyUS+CMAXSUR0CywvuW4Vh1dX2UKGgGR0Bxr7t+kP+XaAdLhGgIR0CywxDefqX4dX2UKGgGR0BxyHXPJJXhaAdLt2gIR0CywxYM8YAKdX2UKGgGR0BwIhAOavzOaAdLrWgIR0Cyw6G0iQkpdX2UKGgGR0Bx8OwX668QaAdLjWgIR0Cyw7biuMdcdX2UKGgGR0BziuTW5H3DaAdL6GgIR0Cyw7ndO6/ZdX2UKGgGR0BzP0j8k2P1aAdLqmgIR0Cyw/VXNke7dX2UKGgGR0BzizpzLfUGaAdLtWgIR0Cyw/kRe1KHdX2UKGgGR0By+JmL9/BnaAdLzGgIR0CyxCXAuZkTdX2UKGgGR0Bxg5Un5SFXaAdL7mgIR0CyxE1HFxXGdX2UKGgGR0Bw7d8KG+K1aAdLsGgIR0CyxFQH/tIDdX2UKGgGR0ByRmSkj5bhaAdLp2gIR0CyxGhXCCSSdX2UKGgGR0BX8g1zhgmaaAdN6ANoCEdAssR7o5ggHXV9lChoBkdAcm3cHWz4UWgHS9JoCEdAssSMrupjt3V9lChoBkdAcCHuE25xzmgHS75oCEdAssSkl9jPOnV9lChoBkdAcXEzxgAp8WgHS75oCEdAssSn9m6GxnV9lChoBkdAc4rAlOXVsmgHS95oCEdAssTGews5GXV9lChoBkdAcrmXarWAgGgHS61oCEdAssToyO7xu3V9lChoBkdAcQpPpIMBqGgHS6toCEdAssTyqR2bG3V9lChoBkdAcIjMnZ00WWgHS59oCEdAssVFL127nXV9lChoBkdAY6WbCrLhaWgHTegDaAhHQLLFRJ17pmp1fZQoaAZHQHHFjZQHiWFoB0vLaAhHQLLFTL1EmY11fZQoaAZHQHCM0OAiFCdoB0uqaAhHQLLFUCbc45t1fZQoaAZHQE8arQw9JSRoB0tYaAhHQLLFUDuBtk51fZQoaAZHQHQ1QY51eSloB0vpaAhHQLLFVfTkQwt1fZQoaAZHQHNx+zdDYyxoB0vJaAhHQLLFYFC9h7V1fZQoaAZHQHBtds7+1jRoB0uraAhHQLLFd1L8Jld1fZQoaAZHQHBAaV6eGwloB0ukaAhHQLLFfcZLqUx1fZQoaAZHQHHMs54nndRoB0vOaAhHQLLFlVCojwB1fZQoaAZHQHFfYEbHZK5oB0uvaAhHQLLFo5iExqR1fZQoaAZHQHPUIqbz9TBoB00XAWgIR0CyxbEwnH/+dX2UKGgGR0BysmLUCq6waAdL3GgIR0CyxeMNUfgadX2UKGgGR0BxAL4L1EmZaAdLrGgIR0Cyxeb2+PBBdX2UKGgGR0BPmNygf2boaAdLWWgIR0Cyxfa7I1cddX2UKGgGR0Byuec8TzunaAdLx2gIR0CyxgMt03fidX2UKGgGR0Bu/hU3n6l+aAdLmmgIR0CyxhysGPgfdX2UKGgGR0ByzWuuA7PqaAdLs2gIR0CyxjqNuLrHdX2UKGgGR0BzHaVVxS5zaAdLtGgIR0CyxjyhFmWddX2UKGgGR0BwT+No8IRiaAdLrWgIR0CyxkM/lhgFdX2UKGgGR0BxLXcynDR/aAdLsGgIR0CyxlMHbAUMdX2UKGgGR0BwzIGW2PT5aAdLq2gIR0CyxmQNTcZcdX2UKGgGR0By/OpR4yGjaAdLzmgIR0Cyxmr6xgRcdX2UKGgGR0Bx2tDpkf9xaAdL5GgIR0Cyxohvm5lOdX2UKGgGR0BxthTP0I1MaAdLxGgIR0CyxqWE0zj4dX2UKGgGR0BzW9hYvFm4aAdLu2gIR0CyxqdJaq0ddX2UKGgGR0BzyaF0xM37aAdLsWgIR0CyxqdkSVW0dX2UKGgGR0Bzjt6NVBD5aAdLsWgIR0Cyxtmr8zhxdX2UKGgGR0BwjLT1CgK4aAdLvWgIR0Cyxv0py6tldX2UKGgGR0Bv8iYJE6T4aAdLk2gIR0CyxwZRsMy8dX2UKGgGR0BzIlXhfjS5aAdLyWgIR0Cyxxp5E+gUdX2UKGgGR0ByBdiiItUXaAdLxmgIR0CyxzCSq2jPdX2UKGgGR0Bva1uk1uR+aAdLpWgIR0CyxzZGOMl1dX2UKGgGR0BxvpJcxCY1aAdLuGgIR0Cyx0IXbdrPdX2UKGgGR0ByZYtL+PzWaAdLwmgIR0Cyx0uBH09RdX2UKGgGR0Bwjw7bL2YfaAdLpWgIR0Cyx28Hv+fidX2UKGgGR0BxMUg5imVJaAdLvWgIR0Cyx3IS6DoRdX2UKGgGR0BygEZLqUu+aAdLw2gIR0Cyx3ObRWtEdX2UKGgGR0BuRWpqASWaaAdLnmgIR0Cyx4MTnJT3dX2UKGgGR0BzxmLbYbsGaAdLtGgIR0Cyx59pudf+dX2UKGgGR0By9H3j+717aAdLvGgIR0Cyx6vCQ9zPdX2UKGgGR0Bu7LFqBVdYaAdLp2gIR0Cyx8LBwdbQdX2UKGgGR0BxLMbGWD6FaAdLomgIR0Cyx+CxZ+x4dX2UKGgGR0Bxm7Xbuc+aaAdLmWgIR0CyyBA3PzFudX2UKGgGR0BwtaSntOVPaAdLomgIR0CyyBd1loUSdX2UKGgGR0BxHyMyad+YaAdLxWgIR0CyyB6GUOd5dX2UKGgGR0BwP/C2tuDSaAdLoWgIR0CyyCcQRPGidX2UKGgGR0BwvZSCOFQEaAdLyGgIR0CyyDck6cRUdX2UKGgGR0BznW8L8aXKaAdLs2gIR0CyyEioCMgmdX2UKGgGR0Bv2W3azu4PaAdLnGgIR0CyyFLrHEMtdX2UKGgGR0BxvAFxGUfQaAdLw2gIR0CyyIXYDklvdX2UKGgGR0BxGGjN6gM+aAdLymgIR0CyyJLzPKMedX2UKGgGR0ByXkNFz+3paAdL0WgIR0CyyLB+KCQLdX2UKGgGR0BxRlnmJWNnaAdLs2gIR0CyyLCYsunNdX2UKGgGR0Bw1YJUo8ZDaAdLvWgIR0CyyLIoAn2JdX2UKGgGR0BxjmJTER8MaAdLqGgIR0CyyLiRGMGYdX2UKGgGR0ByPAPWhAW0aAdLq2gIR0CyyNjqbBoFdX2UKGgGR0Bl1Bb0OEuhaAdN6ANoCEdAssjnx6OYIHV9lChoBkdAcMeGJvYOD2gHS65oCEdAsskMGUwBYHV9lChoBkdAcjiKrJbMYGgHS7xoCEdAsskva/RE4XV9lChoBkdAbmEkj5bhWGgHS59oCEdAssk5fb9IgHV9lChoBkdAcTQJSBK+SWgHS7RoCEdAssk+u5jH43V9lChoBkdAcf+Etuk1uWgHS6hoCEdAssk+QOnVG3V9lChoBkdAcXSld1MdtGgHS8toCEdAsslQJ8fFJnV9lChoBkdAcZoytV7x/mgHS9doCEdAsslTVf/m1nV9lChoBkdAbmXszl90BGgHS5hoCEdAssmMLiMo+nV9lChoBkdAcA/NHpbD/GgHS5toCEdAssmQ1ivxIHV9lChoBkdAc5OKNyYG+2gHS7RoCEdAssmYd+5OJ3V9lChoBkdAcOWFCLMs6WgHS59oCEdAssmYD9wWFnV9lChoBkdAcD33z+WGAWgHS6BoCEdAssnCBxxT9HV9lChoBkdAc2nzRQaaTmgHS9xoCEdAssnFKPGQ0XV9lChoBkdAdBQlbeMyamgHS8VoCEdAssnWF23az3V9lChoBkdAcN1ReTmnwWgHS7FoCEdAssnqij+Jg3V9lChoBkdAcE8l/H5rQGgHS6BoCEdAssobp/wy7HV9lChoBkdAcfthPCVKPGgHS7doCEdAssoalHjIaXV9lChoBkdAQlN4HHFPzmgHS11oCEdAssoc2rGR3nV9lChoBkdAcNcVeruIAWgHS7VoCEdAsspGUaAFxHV9lChoBkdAbxARvFWGRGgHS6toCEdAsspPdk8RtnV9lChoBkdAcSyKfWcz7GgHS71oCEdAsspZ+hGpdnV9lChoBkdActDgNgBtDWgHS8FoCEdAssphxhlUZXV9lChoBkdAcCf6wt8NQWgHS6BoCEdAssqDDR+jM3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 879, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 30, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": 0.05, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.5.0+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.1.0", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}} |