File size: 4,454 Bytes
720a8d9 a2278b3 85629ec 720a8d9 a2278b3 b0e5ad6 a2278b3 ce6f5ea 85629ec |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 |
---
license: mit
widget:
- text: '<|system|>
You are a helpful assistant.</s>
<|user|>
Can you explain to me how quantum computing works?</s>
<|assistant|>
'
model-index:
- name: Cinder-Phi-2-V1-F16-gguf
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 58.28
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Josephgflowers/Cinder-Phi-2-V1-F16-gguf
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 74.04
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Josephgflowers/Cinder-Phi-2-V1-F16-gguf
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 54.46
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Josephgflowers/Cinder-Phi-2-V1-F16-gguf
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 44.5
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Josephgflowers/Cinder-Phi-2-V1-F16-gguf
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 74.66
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Josephgflowers/Cinder-Phi-2-V1-F16-gguf
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 47.23
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Josephgflowers/Cinder-Phi-2-V1-F16-gguf
name: Open LLM Leaderboard
---
I am really enjoying this version of Cinder. More information coming. Training data similar to openhermes2.5 with some added math, STEM, and reasoning mostly from OpenOrca. As well as Cinder character specific data, a mix of RAG generated Q and A of world knowledge, STEM topics, and Cinder Character data. I suplimented the Cinder character with an abreviated Samantha dataset edited for Cinder and removed a lot of the negative responses.
Model Overview Cinder is an AI chatbot tailored for engaging users in scientific and educational conversations, offering companionship, and sparking imaginative exploration.

Chat example from LM Studio:

# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_Josephgflowers__Cinder-Phi-2-V1-F16-gguf)
| Metric |Value|
|---------------------------------|----:|
|Avg. |58.86|
|AI2 Reasoning Challenge (25-Shot)|58.28|
|HellaSwag (10-Shot) |74.04|
|MMLU (5-Shot) |54.46|
|TruthfulQA (0-shot) |44.50|
|Winogrande (5-shot) |74.66|
|GSM8k (5-shot) |47.23|
|