File size: 3,985 Bytes
7beaae3 29b2c22 a89cc8c 7beaae3 9d8664a a89cc8c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 |
---
license: mit
widget:
- text: '<|system|>
You are a helpful assistant</s>
<|user|>
What is your name? Tell me about yourself.</s>
<|assistant|>'
model-index:
- name: tinyllama-730M-test
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 25.09
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Josephgflowers/tinyllama-730M-test
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 33.82
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Josephgflowers/tinyllama-730M-test
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 24.43
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Josephgflowers/tinyllama-730M-test
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 42.9
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Josephgflowers/tinyllama-730M-test
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 51.07
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Josephgflowers/tinyllama-730M-test
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 0.0
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Josephgflowers/tinyllama-730M-test
name: Open LLM Leaderboard
---
I cut my TinyLlama 1.1B cinder v 2 down from 22 layers to 14. At 14 there was no coherent text but there were emerging ideas of a response. 1000 steps on step-by-step dataset.
6000 on Reason-with-cinder. The loss was still over 1 and the learning rate was still over 4. This model needs significat training. I am putting it up as a base model that
needs work. If you continue training please let me know on the tinyllama discord, I have some interesting plans for this model.
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_Josephgflowers__tinyllama-730M-test)
| Metric |Value|
|---------------------------------|----:|
|Avg. |29.55|
|AI2 Reasoning Challenge (25-Shot)|25.09|
|HellaSwag (10-Shot) |33.82|
|MMLU (5-Shot) |24.43|
|TruthfulQA (0-shot) |42.90|
|Winogrande (5-shot) |51.07|
|GSM8k (5-shot) | 0.00|
|