File size: 1,825 Bytes
d1a79ec
 
 
 
 
 
 
 
 
da2cadc
 
5362642
da2cadc
61218a4
da2cadc
 
 
b890398
 
508743a
b815f19
508743a
5348a89
da2cadc
 
5362642
da2cadc
61218a4
da2cadc
b890398
 
b815f19
 
508743a
5348a89
508743a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
---
language:
- en
- zh
tags:
- qwen
- llama
- llama-2
---
[WIP]

This is the LLaMAfied version of [Qwen/Qwen-7B-Chat](https://huggingface.co/Qwen/Qwen-7B-Chat), recalibrated to fit the original LLaMA/LLaMA-2-like model structure.

You can use LlamaCausalLM for model inference, which is the same as LLaMA/LLaMA-2 models (the tokenizer remains the same, so you still need to allow external codes when loading, eg: `AutoTokenizer.from_pretrained(llama_model_path, use_fast=False, trust_remote_code=True)`).

SPOILOR: Further finetuning is in progress, the current version is a work-in-progress, some knowledge may be biased and illusory due to structural changes. Will be updated very, very sooooooooooon.

PROMPT FORMAT: [chatml](https://github.com/openai/openai-python/blob/main/chatml.md)

CURRENT MMLU: 50.36

Issue: Compared to the original Qwen-Chat scoring 53.9, the MMLU score dropped slightly (-3.54) due to insufficient realignment.

[在制品]

这是 [通义千问 Qwen/Qwen-7B-Chat](https://huggingface.co/Qwen/Qwen-7B-Chat) 的 LLaMA 化版本,经过重新校准以适应原始的类似 LLaMA/LLaMA-2 的模型结构。

您可以使用 LlamaCausalLM 进行模型推理,和 LLaMA/LLaMA-2 保持一致(分词器保持不变,因此加载时仍然需要允许外部代码,例如:`AutoTokenizer.from_pretrained(llama_model_path, use_fast=False, trust_remote_code=True)`)。

剧透: 进一步的微调正在进行中,当前版本是一个正在进行的工作,一些知识可能由于结构变化而产生偏见和幻觉。 会更新,很快,非常非常非常快。

PROMPT 格式: [chatml](https://github.com/openai/openai-python/blob/main/chatml.md)

当前的 MMLU: 50.36

问题:相比原本的Qwen-Chat的53.9,由于不够充分的重新对齐,MMLU分数略有下降(-3.54)。