File size: 1,877 Bytes
73514b9 2a118b0 73514b9 4d5b203 73514b9 2a118b0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 |
---
license: apache-2.0
base_model: bert-base-cased
tags:
- generated_from_trainer
metrics:
- precision
- recall
- accuracy
model-index:
- name: bert-finetuned-ner
results: []
datasets:
- conll2002
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-finetuned-ner
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1793
- Precision: 0.7556
- Recall: 0.8015
- Overall F1: 0.7779
- Accuracy: 0.9669
## Model description
This is a model trained on the conll2002 dataset that can be used for Named Entity Recognition. This model uses bert-base-cased as the underlying encoder.
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | Overall F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:----------:|:--------:|
| 0.0221 | 1.0 | 1041 | 0.1840 | 0.7401 | 0.7976 | 0.7678 | 0.9662 |
| 0.0362 | 2.0 | 2082 | 0.1571 | 0.7490 | 0.8028 | 0.7750 | 0.9662 |
| 0.0187 | 3.0 | 3123 | 0.1793 | 0.7556 | 0.8015 | 0.7779 | 0.9669 |
### Framework versions
- Transformers 4.40.2
- Pytorch 2.2.1+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1 |