--- license: apache-2.0 base_model: bert-base-cased tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner results: [] --- # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1564 - Precision: 0.75 - Recall: 0.8045 - F1: 0.7763 - Accuracy: 0.9682 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0439 | 1.0 | 1041 | 0.1419 | 0.7464 | 0.7918 | 0.7684 | 0.9674 | | 0.0458 | 2.0 | 2082 | 0.1414 | 0.7493 | 0.8028 | 0.7752 | 0.9677 | | 0.0261 | 3.0 | 3123 | 0.1564 | 0.75 | 0.8045 | 0.7763 | 0.9682 | ### Framework versions - Transformers 4.40.2 - Pytorch 2.2.1+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1