--- license: apache-2.0 base_model: bert-base-cased tags: - generated_from_trainer datasets: - conll2002 metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2002 type: conll2002 config: es split: validation args: es metrics: - name: Precision type: precision value: 0.7640546993705232 - name: Recall type: recall value: 0.8088235294117647 - name: F1 type: f1 value: 0.7858019868288871 - name: Accuracy type: accuracy value: 0.9676902769959431 --- # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2002 dataset. It achieves the following results on the evaluation set: - Loss: 0.1912 - Precision: 0.7641 - Recall: 0.8088 - F1: 0.7858 - Accuracy: 0.9677 ## Model description More information needed ## How to Use ```python from transformers import AutoTokenizer, AutoModelForTokenClassification, pipeline tokenizer = AutoTokenizer.from_pretrained("JoshuaAAX/bert-finetuned-ner") model = AutoModelForTokenClassification.from_pretrained("JoshuaAAX/bert-finetuned-ner") text = "La Federación nacional de cafeteros de Colombia es una entidad del estado. El primer presidente el Dr Augusto Guerra contó con el aval de la Asociación Colombiana de Aviación." ner_pipeline= pipeline("ner", model=model, tokenizer=tokenizer, aggregation_strategy="max") ner_pipeline(text) ``` ## Training data | Abbreviation | Description | |:-------------:|:-------------:| | O | Outside of NE | | PER | Person’s name | | ORG | Organization | | LOC | Location | | MISC | Miscellaneous | ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.1713 | 1.0 | 521 | 0.1404 | 0.6859 | 0.7387 | 0.7114 | 0.9599 | | 0.0761 | 2.0 | 1042 | 0.1404 | 0.6822 | 0.7693 | 0.7231 | 0.9623 | | 0.05 | 3.0 | 1563 | 0.1304 | 0.7488 | 0.7937 | 0.7706 | 0.9672 | | 0.0355 | 4.0 | 2084 | 0.1454 | 0.7585 | 0.7960 | 0.7768 | 0.9664 | | 0.0253 | 5.0 | 2605 | 0.1501 | 0.7549 | 0.8095 | 0.7812 | 0.9677 | | 0.0184 | 6.0 | 3126 | 0.1726 | 0.7581 | 0.7992 | 0.7781 | 0.9662 | | 0.0138 | 7.0 | 3647 | 0.1743 | 0.7524 | 0.8042 | 0.7774 | 0.9676 | | 0.0112 | 8.0 | 4168 | 0.1853 | 0.7576 | 0.8022 | 0.7792 | 0.9674 | | 0.0082 | 9.0 | 4689 | 0.1914 | 0.7595 | 0.8061 | 0.7821 | 0.9667 | | 0.0073 | 10.0 | 5210 | 0.1912 | 0.7641 | 0.8088 | 0.7858 | 0.9677 | ### Framework versions - Transformers 4.41.0 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1