File size: 2,344 Bytes
fd49b28 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 |
---
license: apache-2.0
base_model: facebook/deit-tiny-distilled-patch16-224
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: quickdraw-DeiT-tiny-c
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# quickdraw-DeiT-tiny-c
This model is a fine-tuned version of [facebook/deit-tiny-distilled-patch16-224](https://huggingface.co/facebook/deit-tiny-distilled-patch16-224) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8784
- Accuracy: 0.7849
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0008
- train_batch_size: 512
- eval_batch_size: 512
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10000
- num_epochs: 8
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:------:|:-----:|:---------------:|:--------:|
| 1.2697 | 0.5688 | 5000 | 1.2368 | 0.6883 |
| 1.1262 | 1.1377 | 10000 | 1.1299 | 0.7127 |
| 1.0215 | 1.7065 | 15000 | 1.0110 | 0.7403 |
| 0.939 | 2.2753 | 20000 | 0.9628 | 0.7521 |
| 0.9129 | 2.8441 | 25000 | 0.9281 | 0.7606 |
| 0.8507 | 3.4130 | 30000 | 0.8973 | 0.7687 |
| 0.8354 | 3.9818 | 35000 | 0.8696 | 0.7752 |
| 0.7773 | 4.5506 | 40000 | 0.8575 | 0.7791 |
| 0.7011 | 5.1195 | 45000 | 0.8497 | 0.7829 |
| 0.6989 | 5.6883 | 50000 | 0.8350 | 0.7860 |
| 0.624 | 6.2571 | 55000 | 0.8524 | 0.7857 |
| 0.6245 | 6.8259 | 60000 | 0.8499 | 0.7874 |
| 0.565 | 7.3948 | 65000 | 0.8795 | 0.7849 |
| 0.5663 | 7.9636 | 70000 | 0.8784 | 0.7849 |
### Framework versions
- Transformers 4.41.0
- Pytorch 2.2.1
- Datasets 2.19.1
- Tokenizers 0.19.1
|