JoshuaKelleyDs commited on
Commit
d318645
1 Parent(s): 5a2c707
README.md ADDED
@@ -0,0 +1,69 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: WinKawaks/vit-tiny-patch16-224
4
+ tags:
5
+ - generated_from_trainer
6
+ metrics:
7
+ - accuracy
8
+ model-index:
9
+ - name: quickdraw-ViT-base-finetune
10
+ results: []
11
+ ---
12
+
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ # quickdraw-ViT-base-finetune
17
+
18
+ This model is a fine-tuned version of [WinKawaks/vit-tiny-patch16-224](https://huggingface.co/WinKawaks/vit-tiny-patch16-224) on an unknown dataset.
19
+ It achieves the following results on the evaluation set:
20
+ - Loss: 0.8260
21
+ - Accuracy: 0.7892
22
+
23
+ ## Model description
24
+
25
+ More information needed
26
+
27
+ ## Intended uses & limitations
28
+
29
+ More information needed
30
+
31
+ ## Training and evaluation data
32
+
33
+ More information needed
34
+
35
+ ## Training procedure
36
+
37
+ ### Training hyperparameters
38
+
39
+ The following hyperparameters were used during training:
40
+ - learning_rate: 0.0008
41
+ - train_batch_size: 512
42
+ - eval_batch_size: 512
43
+ - seed: 42
44
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
45
+ - lr_scheduler_type: linear
46
+ - lr_scheduler_warmup_steps: 10000
47
+ - num_epochs: 5
48
+ - mixed_precision_training: Native AMP
49
+
50
+ ### Training results
51
+
52
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
53
+ |:-------------:|:------:|:-----:|:---------------:|:--------:|
54
+ | 1.3104 | 0.5688 | 5000 | 1.2637 | 0.6826 |
55
+ | 1.1479 | 1.1377 | 10000 | 1.1421 | 0.7096 |
56
+ | 1.0236 | 1.7065 | 15000 | 1.0128 | 0.7404 |
57
+ | 0.9206 | 2.2753 | 20000 | 0.9457 | 0.7577 |
58
+ | 0.8878 | 2.8441 | 25000 | 0.9111 | 0.7652 |
59
+ | 0.8107 | 3.4130 | 30000 | 0.8754 | 0.7749 |
60
+ | 0.7874 | 3.9818 | 35000 | 0.8436 | 0.7827 |
61
+ | 0.7064 | 4.5506 | 40000 | 0.8360 | 0.7869 |
62
+
63
+
64
+ ### Framework versions
65
+
66
+ - Transformers 4.40.2
67
+ - Pytorch 2.2.1
68
+ - Datasets 2.19.1
69
+ - Tokenizers 0.19.1
all_results.json ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 5.0,
3
+ "eval_accuracy": 0.789152,
4
+ "eval_loss": 0.8260353803634644,
5
+ "eval_runtime": 30.0657,
6
+ "eval_samples_per_second": 8315.136,
7
+ "eval_steps_per_second": 16.264,
8
+ "total_flos": 5.7622608792e+17,
9
+ "train_loss": 1.0485419180287436,
10
+ "train_runtime": 8277.8936,
11
+ "train_samples_per_second": 2718.083,
12
+ "train_steps_per_second": 5.309
13
+ }
config.json ADDED
@@ -0,0 +1,718 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "WinKawaks/vit-tiny-patch16-224",
3
+ "architectures": [
4
+ "ViTForImageClassification"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.0,
7
+ "encoder_stride": 16,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.0,
10
+ "hidden_size": 192,
11
+ "id2label": {
12
+ "0": "aircraft carrier",
13
+ "1": "airplane",
14
+ "10": "asparagus",
15
+ "100": "dumbbell",
16
+ "101": "ear",
17
+ "102": "elbow",
18
+ "103": "elephant",
19
+ "104": "envelope",
20
+ "105": "eraser",
21
+ "106": "eye",
22
+ "107": "eyeglasses",
23
+ "108": "face",
24
+ "109": "fan",
25
+ "11": "axe",
26
+ "110": "feather",
27
+ "111": "fence",
28
+ "112": "finger",
29
+ "113": "fire hydrant",
30
+ "114": "fireplace",
31
+ "115": "firetruck",
32
+ "116": "fish",
33
+ "117": "flamingo",
34
+ "118": "flashlight",
35
+ "119": "flip flops",
36
+ "12": "backpack",
37
+ "120": "floor lamp",
38
+ "121": "flower",
39
+ "122": "flying saucer",
40
+ "123": "foot",
41
+ "124": "fork",
42
+ "125": "frog",
43
+ "126": "frying pan",
44
+ "127": "garden hose",
45
+ "128": "garden",
46
+ "129": "giraffe",
47
+ "13": "banana",
48
+ "130": "goatee",
49
+ "131": "golf club",
50
+ "132": "grapes",
51
+ "133": "grass",
52
+ "134": "guitar",
53
+ "135": "hamburger",
54
+ "136": "hammer",
55
+ "137": "hand",
56
+ "138": "harp",
57
+ "139": "hat",
58
+ "14": "bandage",
59
+ "140": "headphones",
60
+ "141": "hedgehog",
61
+ "142": "helicopter",
62
+ "143": "helmet",
63
+ "144": "hexagon",
64
+ "145": "hockey puck",
65
+ "146": "hockey stick",
66
+ "147": "horse",
67
+ "148": "hospital",
68
+ "149": "hot air balloon",
69
+ "15": "barn",
70
+ "150": "hot dog",
71
+ "151": "hot tub",
72
+ "152": "hourglass",
73
+ "153": "house plant",
74
+ "154": "house",
75
+ "155": "hurricane",
76
+ "156": "ice cream",
77
+ "157": "jacket",
78
+ "158": "jail",
79
+ "159": "kangaroo",
80
+ "16": "baseball bat",
81
+ "160": "key",
82
+ "161": "keyboard",
83
+ "162": "knee",
84
+ "163": "knife",
85
+ "164": "ladder",
86
+ "165": "lantern",
87
+ "166": "laptop",
88
+ "167": "leaf",
89
+ "168": "leg",
90
+ "169": "light bulb",
91
+ "17": "baseball",
92
+ "170": "lighter",
93
+ "171": "lighthouse",
94
+ "172": "lightning",
95
+ "173": "line",
96
+ "174": "lion",
97
+ "175": "lipstick",
98
+ "176": "lobster",
99
+ "177": "lollipop",
100
+ "178": "mailbox",
101
+ "179": "map",
102
+ "18": "basket",
103
+ "180": "marker",
104
+ "181": "matches",
105
+ "182": "megaphone",
106
+ "183": "mermaid",
107
+ "184": "microphone",
108
+ "185": "microwave",
109
+ "186": "monkey",
110
+ "187": "moon",
111
+ "188": "mosquito",
112
+ "189": "motorbike",
113
+ "19": "basketball",
114
+ "190": "mountain",
115
+ "191": "mouse",
116
+ "192": "moustache",
117
+ "193": "mouth",
118
+ "194": "mug",
119
+ "195": "mushroom",
120
+ "196": "nail",
121
+ "197": "necklace",
122
+ "198": "nose",
123
+ "199": "ocean",
124
+ "2": "alarm clock",
125
+ "20": "bat",
126
+ "200": "octagon",
127
+ "201": "octopus",
128
+ "202": "onion",
129
+ "203": "oven",
130
+ "204": "owl",
131
+ "205": "paint can",
132
+ "206": "paintbrush",
133
+ "207": "palm tree",
134
+ "208": "panda",
135
+ "209": "pants",
136
+ "21": "bathtub",
137
+ "210": "paper clip",
138
+ "211": "parachute",
139
+ "212": "parrot",
140
+ "213": "passport",
141
+ "214": "peanut",
142
+ "215": "pear",
143
+ "216": "peas",
144
+ "217": "pencil",
145
+ "218": "penguin",
146
+ "219": "piano",
147
+ "22": "beach",
148
+ "220": "pickup truck",
149
+ "221": "picture frame",
150
+ "222": "pig",
151
+ "223": "pillow",
152
+ "224": "pineapple",
153
+ "225": "pizza",
154
+ "226": "pliers",
155
+ "227": "police car",
156
+ "228": "pond",
157
+ "229": "pool",
158
+ "23": "bear",
159
+ "230": "popsicle",
160
+ "231": "postcard",
161
+ "232": "potato",
162
+ "233": "power outlet",
163
+ "234": "purse",
164
+ "235": "rabbit",
165
+ "236": "raccoon",
166
+ "237": "radio",
167
+ "238": "rain",
168
+ "239": "rainbow",
169
+ "24": "beard",
170
+ "240": "rake",
171
+ "241": "remote control",
172
+ "242": "rhinoceros",
173
+ "243": "rifle",
174
+ "244": "river",
175
+ "245": "roller coaster",
176
+ "246": "rollerskates",
177
+ "247": "sailboat",
178
+ "248": "sandwich",
179
+ "249": "saw",
180
+ "25": "bed",
181
+ "250": "saxophone",
182
+ "251": "school bus",
183
+ "252": "scissors",
184
+ "253": "scorpion",
185
+ "254": "screwdriver",
186
+ "255": "sea turtle",
187
+ "256": "see saw",
188
+ "257": "shark",
189
+ "258": "sheep",
190
+ "259": "shoe",
191
+ "26": "bee",
192
+ "260": "shorts",
193
+ "261": "shovel",
194
+ "262": "sink",
195
+ "263": "skateboard",
196
+ "264": "skull",
197
+ "265": "skyscraper",
198
+ "266": "sleeping bag",
199
+ "267": "smiley face",
200
+ "268": "snail",
201
+ "269": "snake",
202
+ "27": "belt",
203
+ "270": "snorkel",
204
+ "271": "snowflake",
205
+ "272": "snowman",
206
+ "273": "soccer ball",
207
+ "274": "sock",
208
+ "275": "speedboat",
209
+ "276": "spider",
210
+ "277": "spoon",
211
+ "278": "spreadsheet",
212
+ "279": "square",
213
+ "28": "bench",
214
+ "280": "squiggle",
215
+ "281": "squirrel",
216
+ "282": "stairs",
217
+ "283": "star",
218
+ "284": "steak",
219
+ "285": "stereo",
220
+ "286": "stethoscope",
221
+ "287": "stitches",
222
+ "288": "stop sign",
223
+ "289": "stove",
224
+ "29": "bicycle",
225
+ "290": "strawberry",
226
+ "291": "streetlight",
227
+ "292": "string bean",
228
+ "293": "submarine",
229
+ "294": "suitcase",
230
+ "295": "sun",
231
+ "296": "swan",
232
+ "297": "sweater",
233
+ "298": "swing set",
234
+ "299": "sword",
235
+ "3": "ambulance",
236
+ "30": "binoculars",
237
+ "300": "syringe",
238
+ "301": "t-shirt",
239
+ "302": "table",
240
+ "303": "teapot",
241
+ "304": "teddy-bear",
242
+ "305": "telephone",
243
+ "306": "television",
244
+ "307": "tennis racquet",
245
+ "308": "tent",
246
+ "309": "The Eiffel Tower",
247
+ "31": "bird",
248
+ "310": "The Great Wall of China",
249
+ "311": "The Mona Lisa",
250
+ "312": "tiger",
251
+ "313": "toaster",
252
+ "314": "toe",
253
+ "315": "toilet",
254
+ "316": "tooth",
255
+ "317": "toothbrush",
256
+ "318": "toothpaste",
257
+ "319": "tornado",
258
+ "32": "birthday cake",
259
+ "320": "tractor",
260
+ "321": "traffic light",
261
+ "322": "train",
262
+ "323": "tree",
263
+ "324": "triangle",
264
+ "325": "trombone",
265
+ "326": "truck",
266
+ "327": "trumpet",
267
+ "328": "umbrella",
268
+ "329": "underwear",
269
+ "33": "blackberry",
270
+ "330": "van",
271
+ "331": "vase",
272
+ "332": "violin",
273
+ "333": "washing machine",
274
+ "334": "watermelon",
275
+ "335": "waterslide",
276
+ "336": "whale",
277
+ "337": "wheel",
278
+ "338": "windmill",
279
+ "339": "wine bottle",
280
+ "34": "blueberry",
281
+ "340": "wine glass",
282
+ "341": "wristwatch",
283
+ "342": "yoga",
284
+ "343": "zebra",
285
+ "344": "zigzag",
286
+ "35": "book",
287
+ "36": "boomerang",
288
+ "37": "bottlecap",
289
+ "38": "bowtie",
290
+ "39": "bracelet",
291
+ "4": "angel",
292
+ "40": "brain",
293
+ "41": "bread",
294
+ "42": "bridge",
295
+ "43": "broccoli",
296
+ "44": "broom",
297
+ "45": "bucket",
298
+ "46": "bulldozer",
299
+ "47": "bus",
300
+ "48": "bush",
301
+ "49": "butterfly",
302
+ "5": "animal migration",
303
+ "50": "cactus",
304
+ "51": "cake",
305
+ "52": "calculator",
306
+ "53": "calendar",
307
+ "54": "camel",
308
+ "55": "camera",
309
+ "56": "camouflage",
310
+ "57": "campfire",
311
+ "58": "candle",
312
+ "59": "cannon",
313
+ "6": "ant",
314
+ "60": "canoe",
315
+ "61": "car",
316
+ "62": "carrot",
317
+ "63": "castle",
318
+ "64": "cat",
319
+ "65": "ceiling fan",
320
+ "66": "cell phone",
321
+ "67": "cello",
322
+ "68": "chair",
323
+ "69": "chandelier",
324
+ "7": "anvil",
325
+ "70": "church",
326
+ "71": "circle",
327
+ "72": "clarinet",
328
+ "73": "clock",
329
+ "74": "cloud",
330
+ "75": "coffee cup",
331
+ "76": "compass",
332
+ "77": "computer",
333
+ "78": "cookie",
334
+ "79": "cooler",
335
+ "8": "apple",
336
+ "80": "couch",
337
+ "81": "cow",
338
+ "82": "crab",
339
+ "83": "crayon",
340
+ "84": "crocodile",
341
+ "85": "crown",
342
+ "86": "cruise ship",
343
+ "87": "cup",
344
+ "88": "diamond",
345
+ "89": "dishwasher",
346
+ "9": "arm",
347
+ "90": "diving board",
348
+ "91": "dog",
349
+ "92": "dolphin",
350
+ "93": "donut",
351
+ "94": "door",
352
+ "95": "dragon",
353
+ "96": "dresser",
354
+ "97": "drill",
355
+ "98": "drums",
356
+ "99": "duck"
357
+ },
358
+ "image_size": 28,
359
+ "initializer_range": 0.02,
360
+ "intermediate_size": 768,
361
+ "label2id": {
362
+ "The Eiffel Tower": "309",
363
+ "The Great Wall of China": "310",
364
+ "The Mona Lisa": "311",
365
+ "aircraft carrier": "0",
366
+ "airplane": "1",
367
+ "alarm clock": "2",
368
+ "ambulance": "3",
369
+ "angel": "4",
370
+ "animal migration": "5",
371
+ "ant": "6",
372
+ "anvil": "7",
373
+ "apple": "8",
374
+ "arm": "9",
375
+ "asparagus": "10",
376
+ "axe": "11",
377
+ "backpack": "12",
378
+ "banana": "13",
379
+ "bandage": "14",
380
+ "barn": "15",
381
+ "baseball": "17",
382
+ "baseball bat": "16",
383
+ "basket": "18",
384
+ "basketball": "19",
385
+ "bat": "20",
386
+ "bathtub": "21",
387
+ "beach": "22",
388
+ "bear": "23",
389
+ "beard": "24",
390
+ "bed": "25",
391
+ "bee": "26",
392
+ "belt": "27",
393
+ "bench": "28",
394
+ "bicycle": "29",
395
+ "binoculars": "30",
396
+ "bird": "31",
397
+ "birthday cake": "32",
398
+ "blackberry": "33",
399
+ "blueberry": "34",
400
+ "book": "35",
401
+ "boomerang": "36",
402
+ "bottlecap": "37",
403
+ "bowtie": "38",
404
+ "bracelet": "39",
405
+ "brain": "40",
406
+ "bread": "41",
407
+ "bridge": "42",
408
+ "broccoli": "43",
409
+ "broom": "44",
410
+ "bucket": "45",
411
+ "bulldozer": "46",
412
+ "bus": "47",
413
+ "bush": "48",
414
+ "butterfly": "49",
415
+ "cactus": "50",
416
+ "cake": "51",
417
+ "calculator": "52",
418
+ "calendar": "53",
419
+ "camel": "54",
420
+ "camera": "55",
421
+ "camouflage": "56",
422
+ "campfire": "57",
423
+ "candle": "58",
424
+ "cannon": "59",
425
+ "canoe": "60",
426
+ "car": "61",
427
+ "carrot": "62",
428
+ "castle": "63",
429
+ "cat": "64",
430
+ "ceiling fan": "65",
431
+ "cell phone": "66",
432
+ "cello": "67",
433
+ "chair": "68",
434
+ "chandelier": "69",
435
+ "church": "70",
436
+ "circle": "71",
437
+ "clarinet": "72",
438
+ "clock": "73",
439
+ "cloud": "74",
440
+ "coffee cup": "75",
441
+ "compass": "76",
442
+ "computer": "77",
443
+ "cookie": "78",
444
+ "cooler": "79",
445
+ "couch": "80",
446
+ "cow": "81",
447
+ "crab": "82",
448
+ "crayon": "83",
449
+ "crocodile": "84",
450
+ "crown": "85",
451
+ "cruise ship": "86",
452
+ "cup": "87",
453
+ "diamond": "88",
454
+ "dishwasher": "89",
455
+ "diving board": "90",
456
+ "dog": "91",
457
+ "dolphin": "92",
458
+ "donut": "93",
459
+ "door": "94",
460
+ "dragon": "95",
461
+ "dresser": "96",
462
+ "drill": "97",
463
+ "drums": "98",
464
+ "duck": "99",
465
+ "dumbbell": "100",
466
+ "ear": "101",
467
+ "elbow": "102",
468
+ "elephant": "103",
469
+ "envelope": "104",
470
+ "eraser": "105",
471
+ "eye": "106",
472
+ "eyeglasses": "107",
473
+ "face": "108",
474
+ "fan": "109",
475
+ "feather": "110",
476
+ "fence": "111",
477
+ "finger": "112",
478
+ "fire hydrant": "113",
479
+ "fireplace": "114",
480
+ "firetruck": "115",
481
+ "fish": "116",
482
+ "flamingo": "117",
483
+ "flashlight": "118",
484
+ "flip flops": "119",
485
+ "floor lamp": "120",
486
+ "flower": "121",
487
+ "flying saucer": "122",
488
+ "foot": "123",
489
+ "fork": "124",
490
+ "frog": "125",
491
+ "frying pan": "126",
492
+ "garden": "128",
493
+ "garden hose": "127",
494
+ "giraffe": "129",
495
+ "goatee": "130",
496
+ "golf club": "131",
497
+ "grapes": "132",
498
+ "grass": "133",
499
+ "guitar": "134",
500
+ "hamburger": "135",
501
+ "hammer": "136",
502
+ "hand": "137",
503
+ "harp": "138",
504
+ "hat": "139",
505
+ "headphones": "140",
506
+ "hedgehog": "141",
507
+ "helicopter": "142",
508
+ "helmet": "143",
509
+ "hexagon": "144",
510
+ "hockey puck": "145",
511
+ "hockey stick": "146",
512
+ "horse": "147",
513
+ "hospital": "148",
514
+ "hot air balloon": "149",
515
+ "hot dog": "150",
516
+ "hot tub": "151",
517
+ "hourglass": "152",
518
+ "house": "154",
519
+ "house plant": "153",
520
+ "hurricane": "155",
521
+ "ice cream": "156",
522
+ "jacket": "157",
523
+ "jail": "158",
524
+ "kangaroo": "159",
525
+ "key": "160",
526
+ "keyboard": "161",
527
+ "knee": "162",
528
+ "knife": "163",
529
+ "ladder": "164",
530
+ "lantern": "165",
531
+ "laptop": "166",
532
+ "leaf": "167",
533
+ "leg": "168",
534
+ "light bulb": "169",
535
+ "lighter": "170",
536
+ "lighthouse": "171",
537
+ "lightning": "172",
538
+ "line": "173",
539
+ "lion": "174",
540
+ "lipstick": "175",
541
+ "lobster": "176",
542
+ "lollipop": "177",
543
+ "mailbox": "178",
544
+ "map": "179",
545
+ "marker": "180",
546
+ "matches": "181",
547
+ "megaphone": "182",
548
+ "mermaid": "183",
549
+ "microphone": "184",
550
+ "microwave": "185",
551
+ "monkey": "186",
552
+ "moon": "187",
553
+ "mosquito": "188",
554
+ "motorbike": "189",
555
+ "mountain": "190",
556
+ "mouse": "191",
557
+ "moustache": "192",
558
+ "mouth": "193",
559
+ "mug": "194",
560
+ "mushroom": "195",
561
+ "nail": "196",
562
+ "necklace": "197",
563
+ "nose": "198",
564
+ "ocean": "199",
565
+ "octagon": "200",
566
+ "octopus": "201",
567
+ "onion": "202",
568
+ "oven": "203",
569
+ "owl": "204",
570
+ "paint can": "205",
571
+ "paintbrush": "206",
572
+ "palm tree": "207",
573
+ "panda": "208",
574
+ "pants": "209",
575
+ "paper clip": "210",
576
+ "parachute": "211",
577
+ "parrot": "212",
578
+ "passport": "213",
579
+ "peanut": "214",
580
+ "pear": "215",
581
+ "peas": "216",
582
+ "pencil": "217",
583
+ "penguin": "218",
584
+ "piano": "219",
585
+ "pickup truck": "220",
586
+ "picture frame": "221",
587
+ "pig": "222",
588
+ "pillow": "223",
589
+ "pineapple": "224",
590
+ "pizza": "225",
591
+ "pliers": "226",
592
+ "police car": "227",
593
+ "pond": "228",
594
+ "pool": "229",
595
+ "popsicle": "230",
596
+ "postcard": "231",
597
+ "potato": "232",
598
+ "power outlet": "233",
599
+ "purse": "234",
600
+ "rabbit": "235",
601
+ "raccoon": "236",
602
+ "radio": "237",
603
+ "rain": "238",
604
+ "rainbow": "239",
605
+ "rake": "240",
606
+ "remote control": "241",
607
+ "rhinoceros": "242",
608
+ "rifle": "243",
609
+ "river": "244",
610
+ "roller coaster": "245",
611
+ "rollerskates": "246",
612
+ "sailboat": "247",
613
+ "sandwich": "248",
614
+ "saw": "249",
615
+ "saxophone": "250",
616
+ "school bus": "251",
617
+ "scissors": "252",
618
+ "scorpion": "253",
619
+ "screwdriver": "254",
620
+ "sea turtle": "255",
621
+ "see saw": "256",
622
+ "shark": "257",
623
+ "sheep": "258",
624
+ "shoe": "259",
625
+ "shorts": "260",
626
+ "shovel": "261",
627
+ "sink": "262",
628
+ "skateboard": "263",
629
+ "skull": "264",
630
+ "skyscraper": "265",
631
+ "sleeping bag": "266",
632
+ "smiley face": "267",
633
+ "snail": "268",
634
+ "snake": "269",
635
+ "snorkel": "270",
636
+ "snowflake": "271",
637
+ "snowman": "272",
638
+ "soccer ball": "273",
639
+ "sock": "274",
640
+ "speedboat": "275",
641
+ "spider": "276",
642
+ "spoon": "277",
643
+ "spreadsheet": "278",
644
+ "square": "279",
645
+ "squiggle": "280",
646
+ "squirrel": "281",
647
+ "stairs": "282",
648
+ "star": "283",
649
+ "steak": "284",
650
+ "stereo": "285",
651
+ "stethoscope": "286",
652
+ "stitches": "287",
653
+ "stop sign": "288",
654
+ "stove": "289",
655
+ "strawberry": "290",
656
+ "streetlight": "291",
657
+ "string bean": "292",
658
+ "submarine": "293",
659
+ "suitcase": "294",
660
+ "sun": "295",
661
+ "swan": "296",
662
+ "sweater": "297",
663
+ "swing set": "298",
664
+ "sword": "299",
665
+ "syringe": "300",
666
+ "t-shirt": "301",
667
+ "table": "302",
668
+ "teapot": "303",
669
+ "teddy-bear": "304",
670
+ "telephone": "305",
671
+ "television": "306",
672
+ "tennis racquet": "307",
673
+ "tent": "308",
674
+ "tiger": "312",
675
+ "toaster": "313",
676
+ "toe": "314",
677
+ "toilet": "315",
678
+ "tooth": "316",
679
+ "toothbrush": "317",
680
+ "toothpaste": "318",
681
+ "tornado": "319",
682
+ "tractor": "320",
683
+ "traffic light": "321",
684
+ "train": "322",
685
+ "tree": "323",
686
+ "triangle": "324",
687
+ "trombone": "325",
688
+ "truck": "326",
689
+ "trumpet": "327",
690
+ "umbrella": "328",
691
+ "underwear": "329",
692
+ "van": "330",
693
+ "vase": "331",
694
+ "violin": "332",
695
+ "washing machine": "333",
696
+ "watermelon": "334",
697
+ "waterslide": "335",
698
+ "whale": "336",
699
+ "wheel": "337",
700
+ "windmill": "338",
701
+ "wine bottle": "339",
702
+ "wine glass": "340",
703
+ "wristwatch": "341",
704
+ "yoga": "342",
705
+ "zebra": "343",
706
+ "zigzag": "344"
707
+ },
708
+ "layer_norm_eps": 1e-12,
709
+ "model_type": "vit",
710
+ "num_attention_heads": 3,
711
+ "num_channels": 1,
712
+ "num_hidden_layers": 12,
713
+ "patch_size": 2,
714
+ "problem_type": "single_label_classification",
715
+ "qkv_bias": true,
716
+ "torch_dtype": "float32",
717
+ "transformers_version": "4.40.2"
718
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:408f0fc26d51182071c009281ae38bb99d20bb75e1145aac5bb1d547764bc10e
3
+ size 21799972
preprocessor_config.json ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_valid_processor_keys": [
3
+ "images",
4
+ "do_resize",
5
+ "size",
6
+ "resample",
7
+ "do_rescale",
8
+ "rescale_factor",
9
+ "do_normalize",
10
+ "image_mean",
11
+ "image_std",
12
+ "return_tensors",
13
+ "data_format",
14
+ "input_data_format"
15
+ ],
16
+ "do_center_crop": false,
17
+ "do_normalize": true,
18
+ "do_rescale": true,
19
+ "do_resize": true,
20
+ "image_mean": [
21
+ 0.5
22
+ ],
23
+ "image_processor_type": "ViTImageProcessor",
24
+ "image_std": [
25
+ 0.5
26
+ ],
27
+ "resample": 2,
28
+ "rescale_factor": 0.00392156862745098,
29
+ "size": {
30
+ "height": 28,
31
+ "width": 28
32
+ }
33
+ }
test_results.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 5.0,
3
+ "eval_accuracy": 0.789152,
4
+ "eval_loss": 0.8260353803634644,
5
+ "eval_runtime": 30.0657,
6
+ "eval_samples_per_second": 8315.136,
7
+ "eval_steps_per_second": 16.264
8
+ }
train_results.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 5.0,
3
+ "total_flos": 5.7622608792e+17,
4
+ "train_loss": 1.0485419180287436,
5
+ "train_runtime": 8277.8936,
6
+ "train_samples_per_second": 2718.083,
7
+ "train_steps_per_second": 5.309
8
+ }
trainer_state.json ADDED
@@ -0,0 +1,403 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 5.0,
5
+ "eval_steps": 5000,
6
+ "global_step": 43950,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.11376564277588168,
13
+ "grad_norm": 21.099435806274414,
14
+ "learning_rate": 7.984000000000001e-05,
15
+ "loss": 4.3757,
16
+ "step": 1000
17
+ },
18
+ {
19
+ "epoch": 0.22753128555176336,
20
+ "grad_norm": 6.149295330047607,
21
+ "learning_rate": 0.00015984000000000001,
22
+ "loss": 2.2482,
23
+ "step": 2000
24
+ },
25
+ {
26
+ "epoch": 0.3412969283276451,
27
+ "grad_norm": 3.9191203117370605,
28
+ "learning_rate": 0.00023984,
29
+ "loss": 1.6084,
30
+ "step": 3000
31
+ },
32
+ {
33
+ "epoch": 0.4550625711035267,
34
+ "grad_norm": 2.940685987472534,
35
+ "learning_rate": 0.00031984,
36
+ "loss": 1.4021,
37
+ "step": 4000
38
+ },
39
+ {
40
+ "epoch": 0.5688282138794084,
41
+ "grad_norm": 2.688676118850708,
42
+ "learning_rate": 0.00039984000000000005,
43
+ "loss": 1.3104,
44
+ "step": 5000
45
+ },
46
+ {
47
+ "epoch": 0.5688282138794084,
48
+ "eval_accuracy": 0.682576,
49
+ "eval_loss": 1.2636802196502686,
50
+ "eval_runtime": 30.6933,
51
+ "eval_samples_per_second": 8145.096,
52
+ "eval_steps_per_second": 15.932,
53
+ "step": 5000
54
+ },
55
+ {
56
+ "epoch": 0.6825938566552902,
57
+ "grad_norm": 2.202869176864624,
58
+ "learning_rate": 0.00047984000000000004,
59
+ "loss": 1.2594,
60
+ "step": 6000
61
+ },
62
+ {
63
+ "epoch": 0.7963594994311718,
64
+ "grad_norm": 1.9557334184646606,
65
+ "learning_rate": 0.00055984,
66
+ "loss": 1.2241,
67
+ "step": 7000
68
+ },
69
+ {
70
+ "epoch": 0.9101251422070534,
71
+ "grad_norm": 1.6525850296020508,
72
+ "learning_rate": 0.00063984,
73
+ "loss": 1.197,
74
+ "step": 8000
75
+ },
76
+ {
77
+ "epoch": 1.023890784982935,
78
+ "grad_norm": 1.422629714012146,
79
+ "learning_rate": 0.0007197600000000001,
80
+ "loss": 1.1731,
81
+ "step": 9000
82
+ },
83
+ {
84
+ "epoch": 1.1376564277588168,
85
+ "grad_norm": 1.258188247680664,
86
+ "learning_rate": 0.00079976,
87
+ "loss": 1.1479,
88
+ "step": 10000
89
+ },
90
+ {
91
+ "epoch": 1.1376564277588168,
92
+ "eval_accuracy": 0.709628,
93
+ "eval_loss": 1.1420985460281372,
94
+ "eval_runtime": 30.2541,
95
+ "eval_samples_per_second": 8263.34,
96
+ "eval_steps_per_second": 16.163,
97
+ "step": 10000
98
+ },
99
+ {
100
+ "epoch": 1.2514220705346986,
101
+ "grad_norm": 1.3610972166061401,
102
+ "learning_rate": 0.0007765066273932253,
103
+ "loss": 1.1287,
104
+ "step": 11000
105
+ },
106
+ {
107
+ "epoch": 1.36518771331058,
108
+ "grad_norm": 1.2322840690612793,
109
+ "learning_rate": 0.0007529425625920472,
110
+ "loss": 1.0996,
111
+ "step": 12000
112
+ },
113
+ {
114
+ "epoch": 1.4789533560864618,
115
+ "grad_norm": 1.0880305767059326,
116
+ "learning_rate": 0.000729378497790869,
117
+ "loss": 1.0643,
118
+ "step": 13000
119
+ },
120
+ {
121
+ "epoch": 1.5927189988623436,
122
+ "grad_norm": 1.0738807916641235,
123
+ "learning_rate": 0.0007058379970544919,
124
+ "loss": 1.0453,
125
+ "step": 14000
126
+ },
127
+ {
128
+ "epoch": 1.7064846416382253,
129
+ "grad_norm": 0.9920330047607422,
130
+ "learning_rate": 0.0006822739322533137,
131
+ "loss": 1.0236,
132
+ "step": 15000
133
+ },
134
+ {
135
+ "epoch": 1.7064846416382253,
136
+ "eval_accuracy": 0.740376,
137
+ "eval_loss": 1.0128123760223389,
138
+ "eval_runtime": 30.6186,
139
+ "eval_samples_per_second": 8164.961,
140
+ "eval_steps_per_second": 15.971,
141
+ "step": 15000
142
+ },
143
+ {
144
+ "epoch": 1.820250284414107,
145
+ "grad_norm": 0.9682360291481018,
146
+ "learning_rate": 0.0006587098674521356,
147
+ "loss": 1.008,
148
+ "step": 16000
149
+ },
150
+ {
151
+ "epoch": 1.9340159271899886,
152
+ "grad_norm": 0.9743279814720154,
153
+ "learning_rate": 0.0006351458026509574,
154
+ "loss": 0.9879,
155
+ "step": 17000
156
+ },
157
+ {
158
+ "epoch": 2.04778156996587,
159
+ "grad_norm": 0.8997290134429932,
160
+ "learning_rate": 0.0006116288659793814,
161
+ "loss": 0.9578,
162
+ "step": 18000
163
+ },
164
+ {
165
+ "epoch": 2.161547212741752,
166
+ "grad_norm": 0.8797656297683716,
167
+ "learning_rate": 0.0005880648011782032,
168
+ "loss": 0.9252,
169
+ "step": 19000
170
+ },
171
+ {
172
+ "epoch": 2.2753128555176336,
173
+ "grad_norm": 0.8649430871009827,
174
+ "learning_rate": 0.000564500736377025,
175
+ "loss": 0.9206,
176
+ "step": 20000
177
+ },
178
+ {
179
+ "epoch": 2.2753128555176336,
180
+ "eval_accuracy": 0.757684,
181
+ "eval_loss": 0.9457069039344788,
182
+ "eval_runtime": 30.4556,
183
+ "eval_samples_per_second": 8208.682,
184
+ "eval_steps_per_second": 16.056,
185
+ "step": 20000
186
+ },
187
+ {
188
+ "epoch": 2.3890784982935154,
189
+ "grad_norm": 0.888418972492218,
190
+ "learning_rate": 0.0005409366715758468,
191
+ "loss": 0.9164,
192
+ "step": 21000
193
+ },
194
+ {
195
+ "epoch": 2.502844141069397,
196
+ "grad_norm": 0.8337541818618774,
197
+ "learning_rate": 0.0005173961708394698,
198
+ "loss": 0.9029,
199
+ "step": 22000
200
+ },
201
+ {
202
+ "epoch": 2.616609783845279,
203
+ "grad_norm": 0.8450725078582764,
204
+ "learning_rate": 0.0004938321060382916,
205
+ "loss": 0.9027,
206
+ "step": 23000
207
+ },
208
+ {
209
+ "epoch": 2.73037542662116,
210
+ "grad_norm": 0.8347210884094238,
211
+ "learning_rate": 0.00047029160530191456,
212
+ "loss": 0.8942,
213
+ "step": 24000
214
+ },
215
+ {
216
+ "epoch": 2.8441410693970424,
217
+ "grad_norm": 0.9702669382095337,
218
+ "learning_rate": 0.00044672754050073635,
219
+ "loss": 0.8878,
220
+ "step": 25000
221
+ },
222
+ {
223
+ "epoch": 2.8441410693970424,
224
+ "eval_accuracy": 0.765228,
225
+ "eval_loss": 0.9111341834068298,
226
+ "eval_runtime": 30.5593,
227
+ "eval_samples_per_second": 8180.815,
228
+ "eval_steps_per_second": 16.002,
229
+ "step": 25000
230
+ },
231
+ {
232
+ "epoch": 2.9579067121729237,
233
+ "grad_norm": 0.7944394946098328,
234
+ "learning_rate": 0.00042318703976435934,
235
+ "loss": 0.8766,
236
+ "step": 26000
237
+ },
238
+ {
239
+ "epoch": 3.0716723549488054,
240
+ "grad_norm": 0.750736653804779,
241
+ "learning_rate": 0.0003996465390279823,
242
+ "loss": 0.836,
243
+ "step": 27000
244
+ },
245
+ {
246
+ "epoch": 3.185437997724687,
247
+ "grad_norm": 0.907810628414154,
248
+ "learning_rate": 0.0003760824742268041,
249
+ "loss": 0.8147,
250
+ "step": 28000
251
+ },
252
+ {
253
+ "epoch": 3.299203640500569,
254
+ "grad_norm": 0.8858300447463989,
255
+ "learning_rate": 0.0003525184094256259,
256
+ "loss": 0.8098,
257
+ "step": 29000
258
+ },
259
+ {
260
+ "epoch": 3.4129692832764507,
261
+ "grad_norm": 0.8472805619239807,
262
+ "learning_rate": 0.0003289543446244477,
263
+ "loss": 0.8107,
264
+ "step": 30000
265
+ },
266
+ {
267
+ "epoch": 3.4129692832764507,
268
+ "eval_accuracy": 0.7749,
269
+ "eval_loss": 0.8753725290298462,
270
+ "eval_runtime": 30.6567,
271
+ "eval_samples_per_second": 8154.821,
272
+ "eval_steps_per_second": 15.951,
273
+ "step": 30000
274
+ },
275
+ {
276
+ "epoch": 3.526734926052332,
277
+ "grad_norm": 0.8683416843414307,
278
+ "learning_rate": 0.0003054138438880707,
279
+ "loss": 0.8104,
280
+ "step": 31000
281
+ },
282
+ {
283
+ "epoch": 3.640500568828214,
284
+ "grad_norm": 0.8718369007110596,
285
+ "learning_rate": 0.00028184977908689247,
286
+ "loss": 0.8076,
287
+ "step": 32000
288
+ },
289
+ {
290
+ "epoch": 3.7542662116040955,
291
+ "grad_norm": 0.7670469284057617,
292
+ "learning_rate": 0.00025830927835051546,
293
+ "loss": 0.7941,
294
+ "step": 33000
295
+ },
296
+ {
297
+ "epoch": 3.868031854379977,
298
+ "grad_norm": 0.7913306951522827,
299
+ "learning_rate": 0.00023474521354933727,
300
+ "loss": 0.7934,
301
+ "step": 34000
302
+ },
303
+ {
304
+ "epoch": 3.981797497155859,
305
+ "grad_norm": 0.8316972255706787,
306
+ "learning_rate": 0.00021120471281296026,
307
+ "loss": 0.7874,
308
+ "step": 35000
309
+ },
310
+ {
311
+ "epoch": 3.981797497155859,
312
+ "eval_accuracy": 0.782728,
313
+ "eval_loss": 0.8436186909675598,
314
+ "eval_runtime": 30.5157,
315
+ "eval_samples_per_second": 8192.491,
316
+ "eval_steps_per_second": 16.025,
317
+ "step": 35000
318
+ },
319
+ {
320
+ "epoch": 4.09556313993174,
321
+ "grad_norm": 0.8810792565345764,
322
+ "learning_rate": 0.00018766421207658322,
323
+ "loss": 0.7286,
324
+ "step": 36000
325
+ },
326
+ {
327
+ "epoch": 4.2093287827076225,
328
+ "grad_norm": 0.8747660517692566,
329
+ "learning_rate": 0.000164100147275405,
330
+ "loss": 0.7156,
331
+ "step": 37000
332
+ },
333
+ {
334
+ "epoch": 4.323094425483504,
335
+ "grad_norm": 0.8973079323768616,
336
+ "learning_rate": 0.0001405360824742268,
337
+ "loss": 0.7107,
338
+ "step": 38000
339
+ },
340
+ {
341
+ "epoch": 4.436860068259386,
342
+ "grad_norm": 0.8924602270126343,
343
+ "learning_rate": 0.00011697201767304862,
344
+ "loss": 0.7124,
345
+ "step": 39000
346
+ },
347
+ {
348
+ "epoch": 4.550625711035267,
349
+ "grad_norm": 0.8596675992012024,
350
+ "learning_rate": 9.343151693667158e-05,
351
+ "loss": 0.7064,
352
+ "step": 40000
353
+ },
354
+ {
355
+ "epoch": 4.550625711035267,
356
+ "eval_accuracy": 0.786888,
357
+ "eval_loss": 0.8359516263008118,
358
+ "eval_runtime": 30.4174,
359
+ "eval_samples_per_second": 8218.976,
360
+ "eval_steps_per_second": 16.076,
361
+ "step": 40000
362
+ },
363
+ {
364
+ "epoch": 4.664391353811149,
365
+ "grad_norm": 0.927306592464447,
366
+ "learning_rate": 6.986745213549337e-05,
367
+ "loss": 0.7033,
368
+ "step": 41000
369
+ },
370
+ {
371
+ "epoch": 4.778156996587031,
372
+ "grad_norm": 0.9652923941612244,
373
+ "learning_rate": 4.6326951399116346e-05,
374
+ "loss": 0.7012,
375
+ "step": 42000
376
+ },
377
+ {
378
+ "epoch": 4.891922639362912,
379
+ "grad_norm": 0.9106791019439697,
380
+ "learning_rate": 2.2762886597938146e-05,
381
+ "loss": 0.6982,
382
+ "step": 43000
383
+ },
384
+ {
385
+ "epoch": 5.0,
386
+ "step": 43950,
387
+ "total_flos": 5.7622608792e+17,
388
+ "train_loss": 1.0485419180287436,
389
+ "train_runtime": 8277.8936,
390
+ "train_samples_per_second": 2718.083,
391
+ "train_steps_per_second": 5.309
392
+ }
393
+ ],
394
+ "logging_steps": 1000,
395
+ "max_steps": 43950,
396
+ "num_input_tokens_seen": 0,
397
+ "num_train_epochs": 5,
398
+ "save_steps": 5000,
399
+ "total_flos": 5.7622608792e+17,
400
+ "train_batch_size": 512,
401
+ "trial_name": null,
402
+ "trial_params": null
403
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e5d32a6603961a0f0448ec1fe6dfea9ca34a2b5f0985657de45c1e2bf43de1b1
3
+ size 4984