Jsevisal commited on
Commit
3a8e177
·
1 Parent(s): 1139b5d

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +74 -0
README.md ADDED
@@ -0,0 +1,74 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - precision
7
+ - recall
8
+ - f1
9
+ - accuracy
10
+ model-index:
11
+ - name: roberta-gest-pred-seqeval-partialmatch
12
+ results: []
13
+ ---
14
+
15
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
16
+ should probably proofread and complete it, then remove this comment. -->
17
+
18
+ # roberta-gest-pred-seqeval-partialmatch
19
+
20
+ This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the None dataset.
21
+ It achieves the following results on the evaluation set:
22
+ - Loss: 0.6909
23
+ - Precision: 0.7952
24
+ - Recall: 0.7778
25
+ - F1: 0.7489
26
+ - Accuracy: 0.8458
27
+
28
+ ## Model description
29
+
30
+ More information needed
31
+
32
+ ## Intended uses & limitations
33
+
34
+ More information needed
35
+
36
+ ## Training and evaluation data
37
+
38
+ More information needed
39
+
40
+ ## Training procedure
41
+
42
+ ### Training hyperparameters
43
+
44
+ The following hyperparameters were used during training:
45
+ - learning_rate: 2e-05
46
+ - train_batch_size: 16
47
+ - eval_batch_size: 16
48
+ - seed: 42
49
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
50
+ - lr_scheduler_type: linear
51
+ - num_epochs: 10
52
+
53
+ ### Training results
54
+
55
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
56
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
57
+ | 2.0269 | 1.0 | 147 | 1.2260 | 0.3446 | 0.3571 | 0.3404 | 0.6696 |
58
+ | 1.0422 | 2.0 | 294 | 0.8553 | 0.5596 | 0.5248 | 0.4885 | 0.7594 |
59
+ | 0.7198 | 3.0 | 441 | 0.7086 | 0.6623 | 0.6298 | 0.6110 | 0.8097 |
60
+ | 0.5231 | 4.0 | 588 | 0.6330 | 0.7415 | 0.7102 | 0.7061 | 0.8264 |
61
+ | 0.3947 | 5.0 | 735 | 0.6246 | 0.8023 | 0.7382 | 0.7446 | 0.8345 |
62
+ | 0.2866 | 6.0 | 882 | 0.6487 | 0.8263 | 0.7578 | 0.7496 | 0.8519 |
63
+ | 0.2338 | 7.0 | 1029 | 0.6662 | 0.7970 | 0.7608 | 0.7452 | 0.8465 |
64
+ | 0.1791 | 8.0 | 1176 | 0.6762 | 0.7923 | 0.7690 | 0.7432 | 0.8398 |
65
+ | 0.1495 | 9.0 | 1323 | 0.6496 | 0.8008 | 0.7946 | 0.7686 | 0.8552 |
66
+ | 0.1316 | 10.0 | 1470 | 0.6909 | 0.7952 | 0.7778 | 0.7489 | 0.8458 |
67
+
68
+
69
+ ### Framework versions
70
+
71
+ - Transformers 4.27.3
72
+ - Pytorch 1.13.1+cu116
73
+ - Datasets 2.10.1
74
+ - Tokenizers 0.13.2