--- license: mit tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: roberta-gest-pred-seqeval-partialmatch results: [] --- # roberta-gest-pred-seqeval-partialmatch This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6909 - Precision: 0.7952 - Recall: 0.7778 - F1: 0.7489 - Accuracy: 0.8458 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 2.0269 | 1.0 | 147 | 1.2260 | 0.3446 | 0.3571 | 0.3404 | 0.6696 | | 1.0422 | 2.0 | 294 | 0.8553 | 0.5596 | 0.5248 | 0.4885 | 0.7594 | | 0.7198 | 3.0 | 441 | 0.7086 | 0.6623 | 0.6298 | 0.6110 | 0.8097 | | 0.5231 | 4.0 | 588 | 0.6330 | 0.7415 | 0.7102 | 0.7061 | 0.8264 | | 0.3947 | 5.0 | 735 | 0.6246 | 0.8023 | 0.7382 | 0.7446 | 0.8345 | | 0.2866 | 6.0 | 882 | 0.6487 | 0.8263 | 0.7578 | 0.7496 | 0.8519 | | 0.2338 | 7.0 | 1029 | 0.6662 | 0.7970 | 0.7608 | 0.7452 | 0.8465 | | 0.1791 | 8.0 | 1176 | 0.6762 | 0.7923 | 0.7690 | 0.7432 | 0.8398 | | 0.1495 | 9.0 | 1323 | 0.6496 | 0.8008 | 0.7946 | 0.7686 | 0.8552 | | 0.1316 | 10.0 | 1470 | 0.6909 | 0.7952 | 0.7778 | 0.7489 | 0.8458 | ### Framework versions - Transformers 4.27.3 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2