First RL Project
Browse files- README.md +1 -1
- config.json +1 -1
- ppo-LunarLander-v2.zip +2 -2
- ppo-LunarLander-v2/data +25 -25
- ppo-LunarLander-v2/policy.optimizer.pth +1 -1
- ppo-LunarLander-v2/policy.pth +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 267.99 +/- 27.00
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7e4d3da0f400>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7e4d3da0f490>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7e4d3da0f520>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7e4d3da0f5b0>", "_build": "<function ActorCriticPolicy._build at 0x7e4d3da0f640>", "forward": "<function ActorCriticPolicy.forward at 0x7e4d3da0f6d0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7e4d3da0f760>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7e4d3da0f7f0>", "_predict": "<function ActorCriticPolicy._predict at 0x7e4d3da0f880>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7e4d3da0f910>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7e4d3da0f9a0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7e4d3da0fa30>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7e4d3d9af100>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 32768, "_total_timesteps": 10000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1724710777375829486, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAKMf6D6BTA8/WhJQP7P+kL8k9AG/g7HYPAAAAAAAAAAAMxGBPmd6jj+OjTY/t+0Yv3Xnqr5mEqK9AAAAAAAAAABm63S9CuunP3SBQb+gmiK/uvlEPR2Y9z0AAAAAAAAAANOqfb7lMs4+Zd7SvnAqlb9dwBO+5ji2vQAAAAAAAAAAZlUtvVwblz82lya+zRYHvyUARzwkQJE8AAAAAAAAAAAzQTu8NbOxP+LTIb5rxhu+nh/sOrdYtDwAAAAAAAAAABMtEL7BZJs/izkxv0FRCr9N6lY+aHVfPgAAAAAAAAAAmmtuvE2qbj/BzQO+pOBMv9I9pD5Zu7c+AAAAAAAAAAAzfn2923HGP59asL47tl0+CHQQPVYviLwAAAAAAAAAANqkn72Q1rU/3lsYv3edi70Djzk8TjIjvgAAAAAAAAAAGmVDvnuCWz/eQdW+S4dOvzRcVT6OrPo9AAAAAAAAAACGHxI+gKK1P1czOT/2A/u9RKAtvtqBR74AAAAAAAAAANoT1r6CJww/6p1Av3RxlL8nzK8+hywCvQAAAAAAAAAAmhDGPEpuWz9OWxY+RK2Iv2WQLb6CQJm+AAAAAAAAAADAZni+ISMPPkEMg75Eta+/HYRIvo1Yib4AAAAAAAAAAJph1LxLCIY/qswqvumeL7/omiU+eNg3vAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -2.2768, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwFo26/IsAeeMAWyUS0CMAXSUR0ArNjJdSl3ydX2UKGgGR8B09CKFZgXuaAdLb2gIR0ArPMN+b3GodX2UKGgGR8BhsS6nR9gGaAdLamgIR0ArRZuAI6bOdX2UKGgGR8B1fa01IiC8aAdLWWgIR0Arey/sVtXQdX2UKGgGR8BrCwemvW6LaAdLa2gIR0ArgOFxn3+NdX2UKGgGR8B6WqHbh3qzaAdLZGgIR0Arj3bmEGqxdX2UKGgGR8BhP1aKUFB6aAdLaGgIR0ArkCZnctXgdX2UKGgGR8B/HoS6DoQnaAdLW2gIR0Armq2BreqJdX2UKGgGR8BhiK5kK/mDaAdLOWgIR0ArnwG4ZuQ7dX2UKGgGR8B5iRYyO7xvaAdLbWgIR0ArwEHt4RmLdX2UKGgGR8BXdG1+iJwbaAdLVWgIR0Ar0A+Y+jdpdX2UKGgGR8Bkp8qc3EQ5aAdLdGgIR0Ar0xYaHbh4dX2UKGgGR8BZevQa72+PaAdLUmgIR0Ar2r2g3974dX2UKGgGR8BighQizLOiaAdLaGgIR0Ar543WFvhqdX2UKGgGR8B1JCKaXrt3aAdLcWgIR0Ar9XFLnLaFdX2UKGgGR8BVKfoicG1QaAdLf2gIR0Ar7nnuAqd6dX2UKGgGR8BtJsir1dxAaAdLtGgIR0Ar907r9l3AdX2UKGgGR8BnU7Xe3x4IaAdLP2gIR0Ar+lu3trsTdX2UKGgGR8BlFCc9W6siaAdLdGgIR0AsI4EwFkhBdX2UKGgGR8BL9klu3trsaAdLgmgIR0AsSguAZsKtdX2UKGgGR8BXmQQpWmxdaAdLV2gIR0AsTlzU7Sy/dX2UKGgGR8B8uF+/gzguaAdLYGgIR0AsXBAv+OwQdX2UKGgGR8BgAD4rSVnmaAdLZWgIR0AsW3hGYrrgdX2UKGgGR8BfUY/3WWhRaAdLcGgIR0AsYr+5vtMPdX2UKGgGR8BXrXoPkJa8aAdLPGgIR0AsYMd92HLzdX2UKGgGR8BxKMh2W6bwaAdLSGgIR0Asa89wFTvRdX2UKGgGR8BiRdhNM496aAdLb2gIR0Asb1KXfIjodX2UKGgGR8BiRO5UcXFcaAdLT2gIR0Asb9gF5fMOdX2UKGgGR8BvrZ33YcvNaAdLTGgIR0AsjCTEBKcvdX2UKGgGR8Bn6yz5XU6QaAdLXGgIR0AsiaPS2H+IdX2UKGgGR8Bw4geo1k1/aAdLcWgIR0Asoj9GZuyedX2UKGgGR8B0+3H0btJGaAdLY2gIR0Asw0aZQYUGdX2UKGgGR8B0eqFDfFaTaAdLZ2gIR0AsyFdszl90dX2UKGgGR8BUy7VFx4puaAdLQGgIR0AszTqjafz0dX2UKGgGR8BeBq5oXbdraAdLX2gIR0As5iRW912adX2UKGgGR8Bl9+VX3g1naAdLeGgIR0As4XhwVCXydX2UKGgGR8Bh/i5Etuk2aAdLRWgIR0As5+vyLAHndX2UKGgGR8A+3H4XXRPXaAdLSGgIR0As9QN0/4ZddX2UKGgGR8BSYPB7/n4gaAdLQWgIR0As9CHh0hePdX2UKGgGR8B39ws3AEdOaAdLVGgIR0As+P0Zm7J5dX2UKGgGR8BcMRkNFz+4aAdLUGgIR0As/mukk8ifdX2UKGgGR8BtSONrCWNWaAdLTWgIR0As/MzuWrwOdX2UKGgGR8BV63yqdYnwaAdLUGgIR0AtDDFZPl+3dX2UKGgGR8Bl66B3A2ycaAdLT2gIR0AtL3ztkWhzdX2UKGgGR8BTibHuJDVpaAdLR2gIR0AtNbkfcN6PdX2UKGgGR8Bq1+7FsHjZaAdLQ2gIR0AtSHnlnyuqdX2UKGgGR8BZh9D2JzkqaAdLQGgIR0AtS/+sHSncdX2UKGgGR8ByX7D50r9VaAdLdGgIR0AtV8b70nPWdX2UKGgGR8BenHEqDsdDaAdLTmgIR0AtYhEBsANodX2UKGgGR8BdBQSvkiljaAdLRGgIR0AtbKbKA8SxdX2UKGgGR8BtzM/OdGy5aAdLSmgIR0Atc2NvOyE+dX2UKGgGR8BwlPe+Eh7maAdLTGgIR0AtiNzbN8mbdX2UKGgGR8B2d5BF/hESaAdLgmgIR0Atj38n/kvLdX2UKGgGR8BTfvDcdo38aAdLU2gIR0Atm+0w8GLUdX2UKGgGR8Bfk32ugYgraAdLU2gIR0Atn7tRekYXdX2UKGgGR8BgUWJN0vGqaAdLT2gIR0Atz3Qla8pTdX2UKGgGR8BwiwZWJaaDaAdLP2gIR0Atx8eCCjDbdX2UKGgGR8B+zyw0O3DvaAdLZmgIR0At1vsqril0dX2UKGgGR8BqSRLAYYR/aAdLfGgIR0At28/2TPjXdX2UKGgGR8Bo0RTVDrquaAdLdGgIR0At2s189fTkdX2UKGgGR8B50Hw2ETQFaAdLXGgIR0At5WDpTuOTdX2UKGgGR8B2bSpwS8J2aAdLf2gIR0At+qebutwKdX2UKGgGR8Bf94bGWD6FaAdLVGgIR0At/3rUsnRcdX2UKGgGR8BjR/mq5sj3aAdLaGgIR0AuFshPj4pMdX2UKGgGR8A+0t+1Bt1qaAdLPmgIR0AuHIbOu7pWdX2UKGgGR8BmUOafBeolaAdLTmgIR0AuJYqXnhbXdX2UKGgGR8By9WBoVVPvaAdLemgIR0AuVaJyhi9adX2UKGgGR8BxiXxc3VCpaAdLX2gIR0AuW7nxJ/XodX2UKGgGR8Bs+fXsgMc7aAdLdGgIR0AuXF0gbIcSdX2UKGgGR8BzlOZF5OafaAdLbWgIR0AuautfXwsodX2UKGgGR8BcdLLdN34caAdLV2gIR0AugDVYp2ECdX2UKGgGR8BTSDl90A93aAdLUmgIR0AufR3u/k/9dX2UKGgGR8BwUJ0gbIcSaAdLUWgIR0Aufnlnyup0dX2UKGgGR0AG7DqGDcubaAdLj2gIR0Aui8kleF+NdX2UKGgGR8B2ZG2Yv38GaAdLWGgIR0AulNRm9QGfdX2UKGgGR8B1Uj9If8uSaAdLYmgIR0AujW/ag261dX2UKGgGR8Bcj27Wd3B6aAdLaWgIR0AurGMn7YTTdX2UKGgGR8BcY5LZi/fwaAdLYWgIR0AuxOIqLCN0dX2UKGgGR8Bg31IVdonKaAdLaGgIR0AuzeP7vXsgdX2UKGgGR8B18SHwgDA8aAdLXGgIR0Au0vWYnfEXdX2UKGgGR8BVRp/G2kSFaAdLQGgIR0Au2d0aIeo2dX2UKGgGR8BMVSVv/BFeaAdLZGgIR0Au8Fi8WbgCdX2UKGgGR8BVcLRKHwgDaAdLSWgIR0Au8BNEgGKRdX2UKGgGR8Bs/cK1G9YfaAdLQWgIR0AvAGFi8WbgdX2UKGgGR8BYzeIMz/IbaAdLc2gIR0AvA7KaG5+ZdX2UKGgGR8BQ9ZKjBVMmaAdLP2gIR0AvCzyjHn2adX2UKGgGR8B1J03S8an8aAdLT2gIR0AvHLxI8QqadX2UKGgGR8BcL0zbeuV5aAdLVWgIR0AvJEpiI+GHdX2UKGgGR8BVxGWldkauaAdLXWgIR0AvIwfyPMjedX2UKGgGR8BW9ZRKpT/AaAdLamgIR0AvLQD3dsSCdX2UKGgGR8B3XjjyWiUQaAdLYGgIR0AvUAqd6LOzdX2UKGgGR8BSOeEqUeMiaAdLQmgIR0AvVRpDeCTVdX2UKGgGR8B1ow6r/82raAdLamgIR0AvWlTFVDKHdX2UKGgGR8Boz1KAavRraAdLVWgIR0AvZYRujynUdX2UKGgGR8BozsUuctoSaAdLVmgIR0AvcKEWZZ0TdX2UKGgGR8BSelZcLSeAaAdLOmgIR0AvcPFvQ4S6dX2UKGgGR8BXGhEKE385aAdLSWgIR0AveZDRc/t6dX2UKGgGR8B0Gf0e2d/baAdLXWgIR0AvgnivPkaNdX2UKGgGR8BaquFQEZBLaAdLdGgIR0AvjqWTot+TdX2UKGgGR8Btsk/6fra/aAdLSmgIR0Avi48U21lYdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 10, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.4.0+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x780a428256c0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x780a42825750>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x780a428257e0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x780a42825870>", "_build": "<function ActorCriticPolicy._build at 0x780a42825900>", "forward": "<function ActorCriticPolicy.forward at 0x780a42825990>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x780a42825a20>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x780a42825ab0>", "_predict": "<function ActorCriticPolicy._predict at 0x780a42825b40>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x780a42825bd0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x780a42825c60>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x780a42825cf0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x780a4b0c9240>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1724712515817655585, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAKaOvD3VhUE+WT8WvtyDX761tpm99a4FvAAAAAAAAAAAWqSlvQ7oibzEvJq8lQWfPJ8q9L1LpX09AACAPwAAgD86TAE+cQNeu4I8Njsn3fG4c4WTvKphULoAAIA/AACAPyadsL29G2M8hfgoPlV3O74TL4c8BeIaPAAAAAAAAAAAzSQMu49GMLpk9Kw7JltLODsZNzqt10S4AACAPwAAgD+zxgG9XMMhum2/Ozva00s2UmzJurCbVboAAIA/AACAP2ampjz2jHO6gAl9ub7jFbSeoia6qE+TOAAAgD8AAIA/AKuqvB9947mdgO46oGewNa/8YLt1ZA+6AACAPwAAgD+azdk89thpum4HLbsxsGY4Fnl4O1JYvDkAAIA/AACAP4DUNb47Kk0/6yAOPRRVsb4KtTi9Tn2sPQAAAAAAAAAATXCBvUxNhz/KsCO+FNWovsiV+bzurzy9AAAAAAAAAAAajmC94dq+uGPOvjjApBQ14TiHOrPJ5bcAAIA/AACAP80QajwUiIW6kEF8uRrOiLaKnU25tuuTOAAAgD8AAIA/ADwGPMP1crpNJpU6L954NVN6c7vs0q65AACAPwAAgD8z8725KSxauggK3LfXrb6yXMYqO2ZuATcAAIA/AACAPw3Olz32CHO6GLvJurmaKTf+QA079g6HtgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGQGHOSntOWMAWyUTegDjAF0lEdAkaMQEdNnG3V9lChoBkdAZde3LFGXomgHTegDaAhHQJGl3hIe5nV1fZQoaAZHQGI1YEW69TRoB03oA2gIR0CRwLPjXFtLdX2UKGgGR0BjRDtVrAP/aAdN6ANoCEdAkcbVNlAeJnV9lChoBkdAZQT5B1LamGgHTegDaAhHQJHHcZBLPD51fZQoaAZHQGKoa9sabWpoB03oA2gIR0CR1SeO4oZydX2UKGgGR0BhrgtpVS4waAdN6ANoCEdAkdbezY287XV9lChoBkdAZIoRnvlU62gHTegDaAhHQJHXjo6jnFJ1fZQoaAZHQGDW+nhsImhoB03oA2gIR0CR2azhgmZ3dX2UKGgGR0Bl4BAMUh3aaAdN6ANoCEdAkdoIWcjJMnV9lChoBkdAaD6b70nPV2gHTegDaAhHQJHbjSw4bS91fZQoaAZHQGH2TgMtsepoB03oA2gIR0CR3Rhib2DhdX2UKGgGR0BlSpbyH2ytaAdN6ANoCEdAkd0lQZXMhXV9lChoBkdAXyZUXHim22gHTegDaAhHQJHrAEGJN0x1fZQoaAZHQGMAN2s7uD1oB03oA2gIR0CR7DtFKCg9dX2UKGgGR0Bl23HLidauaAdN6ANoCEdAke41RgqmTHV9lChoBkdAYEXSfDk2gmgHTegDaAhHQJHvS+FlCkZ1fZQoaAZHQGOUhCUornVoB03oA2gIR0CR8y+CbtqpdX2UKGgGR0BiCA6wMYuTaAdN6ANoCEdAkg5vUjLSu3V9lChoBkdAYdp8Sf16FGgHTegDaAhHQJIUEnXumaZ1fZQoaAZHQGZORSP2f05oB03oA2gIR0CSFL/7zkIYdX2UKGgGR0BoSK6UaAFxaAdN6ANoCEdAkiK8XWOIZnV9lChoBkdAYLMRVZLZjGgHTegDaAhHQJIlT7j1f3N1fZQoaAZHQGejGCyyD7JoB03oA2gIR0CSJlDWsijddX2UKGgGR0Bl8FMqSX+maAdN6ANoCEdAkilhl18stnV9lChoBkdAYmoHbAUL2GgHTegDaAhHQJIp2DSPU8V1fZQoaAZHQGJ3dcKPXCloB03oA2gIR0CSLCmnwXqJdX2UKGgGR0BjQ1Jg9eQdaAdN6ANoCEdAki5rIT4+KXV9lChoBkdAYftNvfj0c2gHTegDaAhHQJIufmnwXqJ1fZQoaAZHQGbpFglWwNdoB03oA2gIR0CSPBTrVvuPdX2UKGgGR0BnI1SjxkNGaAdN6ANoCEdAkj1HBk7OmnV9lChoBkdAZoygHu7YkGgHTegDaAhHQJI++nLq2Sd1fZQoaAZHQF5lKpDNQj5oB03oA2gIR0CSP7uG9HtndX2UKGgGR0BnwYoTfzjFaAdN6ANoCEdAkkKPKdQO4HV9lChoBkdAZgebExZdOmgHTegDaAhHQJJciDZlFtt1fZQoaAZHQGDEAkC3gDRoB03oA2gIR0CSY2fJmukldX2UKGgGR0BdzGqDK5kLaAdN6ANoCEdAkmQbCm/Fi3V9lChoBkdAZGBsvZh8Y2gHTegDaAhHQJJza7OE/Sp1fZQoaAZHQGjKdWhh6SloB03oA2gIR0CSdWeiSJTEdX2UKGgGR0BmQg7NjbztaAdN6ANoCEdAknY5+MIeHXV9lChoBkdAY35W/ag262gHTegDaAhHQJJ4so0ALiN1fZQoaAZHQGb1I/JNj9ZoB03oA2gIR0CSeQ2F36hydX2UKGgGR0BhlYr1/Ue/aAdN6ANoCEdAknsU690zTHV9lChoBkdAZIZz+WGATmgHTegDaAhHQJJ9Bo0ygwp1fZQoaAZHQGI1Q0waisZoB03oA2gIR0CSfRVqN6w/dX2UKGgGR0BnWFyo4uK5aAdN6ANoCEdAkox+qrBCU3V9lChoBkdAZxDze40/GGgHTegDaAhHQJKOHrhR64V1fZQoaAZHQGa4cdgfEGZoB03oA2gIR0CSkH4FzMibdX2UKGgGR0BkwZWilBQfaAdN6ANoCEdAkpGmuTzNEHV9lChoBkdAXfXTtsvZiGgHTegDaAhHQJKVdWEK3NN1fZQoaAZHQFMGRV6u4gBoB0vXaAhHQJKbRtm+TNd1fZQoaAZHQGaBkdV/+bVoB03oA2gIR0CSrjn5BTn8dX2UKGgGR0Bj8OQ0XP7faAdN6ANoCEdAkrK4bjtG/nV9lChoBkdAZNjqTKT0QWgHTegDaAhHQJKzS+De0ol1fZQoaAZHQGWAbTMJQchoB03oA2gIR0CSwdEAHVwxdX2UKGgGR0BlLqSTyJ9BaAdN6ANoCEdAksRYsiB5HHV9lChoBkdAZVfcKPXCj2gHTegDaAhHQJLFdSvTw2F1fZQoaAZHQGJUhrvb48FoB03oA2gIR0CSyL3MINVjdX2UKGgGR0Bks6G8EmpmaAdN6ANoCEdAkskvhQ3xWnV9lChoBkdAZcvhb4agmWgHTegDaAhHQJLLEk8ifQN1fZQoaAZHQGXOALRa5gBoB03oA2gIR0CSzNc/t6X0dX2UKGgGR0BnnKE6DGtIaAdN6ANoCEdAkszmelKsdXV9lChoBkdAaHxO3UhFE2gHTegDaAhHQJLdGYAsCkp1fZQoaAZHQGP++2d/axpoB03oA2gIR0CS3vftx+8XdX2UKGgGR0Bh0IZ4wAU+aAdN6ANoCEdAkt/GAskIHHV9lChoBkdAY4/1e0G/vmgHTegDaAhHQJLivuUliSd1fZQoaAZHQF9tXYUWVNZoB03oA2gIR0CS6PHZ9NN8dX2UKGgGR0Bf0HxnWattaAdN6ANoCEdAkup+Z1FH8XV9lChoBkdAXARL39JjD2gHTegDaAhHQJMDwNhE0BR1fZQoaAZHQGh+20AtFrloB03oA2gIR0CTBGTwUg0TdX2UKGgGR0Bly/Zbpu/DaAdN6ANoCEdAkxL/4yoGZHV9lChoBkdAXOaAjIJZ4mgHTegDaAhHQJMU+xzJZGN1fZQoaAZHQGPJwdbPhQ5oB03oA2gIR0CTFcwhW5pbdX2UKGgGR0BhGuBas6q9aAdN6ANoCEdAkxgsZHd43XV9lChoBkdAaL7b0OEuhGgHTegDaAhHQJMYhGDtgKF1fZQoaAZHQGZGYkmhM8JoB03oA2gIR0CTGj6JqIrOdX2UKGgGR0BgV5dKNAC5aAdN6ANoCEdAkxv4f4h2XHV9lChoBkdAYgc5CF9KEmgHTegDaAhHQJMcBlWfbsZ1fZQoaAZHQGamiAtnPE9oB03oA2gIR0CTLns0pEx7dX2UKGgGR0Bk/oeo1k1/aAdN6ANoCEdAkzChgAp8W3V9lChoBkdAZzUf6GgzxmgHTegDaAhHQJMxbMHKOkt1fZQoaAZHQGeZHaWX1J1oB03oA2gIR0CTNGvLX+VDdX2UKGgGR0Bl66+De0ojaAdN6ANoCEdAkzqGKEWZZ3V9lChoBkdAYwyN7SiM52gHTegDaAhHQJM77qHGjsV1fZQoaAZHQGZo7D/EOy5oB03oA2gIR0CTUi13MY/FdX2UKGgGR0BejeaScLBsaAdN6ANoCEdAk1LH1J17pnV9lChoBkdAZqZvlU6xPmgHTegDaAhHQJNjH2ZiNKh1fZQoaAZHQGBn48+zMRpoB03oA2gIR0CTZNQ2/BWQdX2UKGgGR0BgYfAO8TSLaAdN6ANoCEdAk2WMg6ltTHV9lChoBkdAZoeBZpztC2gHTegDaAhHQJNnntWuHN51fZQoaAZHQGIRgood+5RoB03oA2gIR0CTZ+r1dxACdX2UKGgGR0Bl5rZtelbeaAdN6ANoCEdAk2l7LIPsiXV9lChoBkdAYdcX531SO2gHTegDaAhHQJNrKX1J17p1fZQoaAZHQFzeVXV9Wp9oB03oA2gIR0CTazcMVk+YdX2UKGgGR0BlSEqFyq+8aAdN6ANoCEdAk3laTr3TNXV9lChoBkdAZl6rXDm8umgHTegDaAhHQJN6/MB6rvN1fZQoaAZHQGZcvJiiItVoB03oA2gIR0CTe7BN21UmdX2UKGgGR0Bmrc+iaiK0aAdN6ANoCEdAk35Vt8/lhnV9lChoBkdAZVIp6QeV9mgHTegDaAhHQJOEHC3w1BN1fZQoaAZHQGOIQd8zAN5oB03oA2gIR0CThW3MINVjdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.4.0+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:90ad94bc793ae8d27b6c7f350204dc9f29d64126440bf5d6b91143dd073347ce
|
3 |
+
size 148084
|
ppo-LunarLander-v2/data
CHANGED
@@ -4,34 +4,34 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"extract_features": "<function ActorCriticPolicy.extract_features at
|
14 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
15 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
16 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
17 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
18 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
-
"_abc_impl": "<_abc._abc_data object at
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {},
|
24 |
-
"num_timesteps":
|
25 |
-
"_total_timesteps":
|
26 |
"_num_timesteps_at_start": 0,
|
27 |
"seed": null,
|
28 |
"action_noise": null,
|
29 |
-
"start_time":
|
30 |
"learning_rate": 0.0003,
|
31 |
"tensorboard_log": null,
|
32 |
"_last_obs": {
|
33 |
":type:": "<class 'numpy.ndarray'>",
|
34 |
-
":serialized:": "
|
35 |
},
|
36 |
"_last_episode_starts": {
|
37 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -41,17 +41,17 @@
|
|
41 |
"_episode_num": 0,
|
42 |
"use_sde": false,
|
43 |
"sde_sample_freq": -1,
|
44 |
-
"_current_progress_remaining": -
|
45 |
"_stats_window_size": 100,
|
46 |
"ep_info_buffer": {
|
47 |
":type:": "<class 'collections.deque'>",
|
48 |
-
":serialized:": "
|
49 |
},
|
50 |
"ep_success_buffer": {
|
51 |
":type:": "<class 'collections.deque'>",
|
52 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
},
|
54 |
-
"_n_updates":
|
55 |
"observation_space": {
|
56 |
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
@@ -77,14 +77,14 @@
|
|
77 |
"_np_random": null
|
78 |
},
|
79 |
"n_envs": 16,
|
80 |
-
"n_steps":
|
81 |
-
"gamma": 0.
|
82 |
-
"gae_lambda": 0.
|
83 |
-
"ent_coef": 0.
|
84 |
"vf_coef": 0.5,
|
85 |
"max_grad_norm": 0.5,
|
86 |
"batch_size": 64,
|
87 |
-
"n_epochs":
|
88 |
"clip_range": {
|
89 |
":type:": "<class 'function'>",
|
90 |
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x780a428256c0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x780a42825750>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x780a428257e0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x780a42825870>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x780a42825900>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x780a42825990>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x780a42825a20>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x780a42825ab0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x780a42825b40>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x780a42825bd0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x780a42825c60>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x780a42825cf0>",
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x780a4b0c9240>"
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1015808,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
"_num_timesteps_at_start": 0,
|
27 |
"seed": null,
|
28 |
"action_noise": null,
|
29 |
+
"start_time": 1724712515817655585,
|
30 |
"learning_rate": 0.0003,
|
31 |
"tensorboard_log": null,
|
32 |
"_last_obs": {
|
33 |
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAKaOvD3VhUE+WT8WvtyDX761tpm99a4FvAAAAAAAAAAAWqSlvQ7oibzEvJq8lQWfPJ8q9L1LpX09AACAPwAAgD86TAE+cQNeu4I8Njsn3fG4c4WTvKphULoAAIA/AACAPyadsL29G2M8hfgoPlV3O74TL4c8BeIaPAAAAAAAAAAAzSQMu49GMLpk9Kw7JltLODsZNzqt10S4AACAPwAAgD+zxgG9XMMhum2/Ozva00s2UmzJurCbVboAAIA/AACAP2ampjz2jHO6gAl9ub7jFbSeoia6qE+TOAAAgD8AAIA/AKuqvB9947mdgO46oGewNa/8YLt1ZA+6AACAPwAAgD+azdk89thpum4HLbsxsGY4Fnl4O1JYvDkAAIA/AACAP4DUNb47Kk0/6yAOPRRVsb4KtTi9Tn2sPQAAAAAAAAAATXCBvUxNhz/KsCO+FNWovsiV+bzurzy9AAAAAAAAAAAajmC94dq+uGPOvjjApBQ14TiHOrPJ5bcAAIA/AACAP80QajwUiIW6kEF8uRrOiLaKnU25tuuTOAAAgD8AAIA/ADwGPMP1crpNJpU6L954NVN6c7vs0q65AACAPwAAgD8z8725KSxauggK3LfXrb6yXMYqO2ZuATcAAIA/AACAPw3Olz32CHO6GLvJurmaKTf+QA079g6HtgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
},
|
36 |
"_last_episode_starts": {
|
37 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
41 |
"_episode_num": 0,
|
42 |
"use_sde": false,
|
43 |
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.015808000000000044,
|
45 |
"_stats_window_size": 100,
|
46 |
"ep_info_buffer": {
|
47 |
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWVQwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGQGHOSntOWMAWyUTegDjAF0lEdAkaMQEdNnG3V9lChoBkdAZde3LFGXomgHTegDaAhHQJGl3hIe5nV1fZQoaAZHQGI1YEW69TRoB03oA2gIR0CRwLPjXFtLdX2UKGgGR0BjRDtVrAP/aAdN6ANoCEdAkcbVNlAeJnV9lChoBkdAZQT5B1LamGgHTegDaAhHQJHHcZBLPD51fZQoaAZHQGKoa9sabWpoB03oA2gIR0CR1SeO4oZydX2UKGgGR0BhrgtpVS4waAdN6ANoCEdAkdbezY287XV9lChoBkdAZIoRnvlU62gHTegDaAhHQJHXjo6jnFJ1fZQoaAZHQGDW+nhsImhoB03oA2gIR0CR2azhgmZ3dX2UKGgGR0Bl4BAMUh3aaAdN6ANoCEdAkdoIWcjJMnV9lChoBkdAaD6b70nPV2gHTegDaAhHQJHbjSw4bS91fZQoaAZHQGH2TgMtsepoB03oA2gIR0CR3Rhib2DhdX2UKGgGR0BlSpbyH2ytaAdN6ANoCEdAkd0lQZXMhXV9lChoBkdAXyZUXHim22gHTegDaAhHQJHrAEGJN0x1fZQoaAZHQGMAN2s7uD1oB03oA2gIR0CR7DtFKCg9dX2UKGgGR0Bl23HLidauaAdN6ANoCEdAke41RgqmTHV9lChoBkdAYEXSfDk2gmgHTegDaAhHQJHvS+FlCkZ1fZQoaAZHQGOUhCUornVoB03oA2gIR0CR8y+CbtqpdX2UKGgGR0BiCA6wMYuTaAdN6ANoCEdAkg5vUjLSu3V9lChoBkdAYdp8Sf16FGgHTegDaAhHQJIUEnXumaZ1fZQoaAZHQGZORSP2f05oB03oA2gIR0CSFL/7zkIYdX2UKGgGR0BoSK6UaAFxaAdN6ANoCEdAkiK8XWOIZnV9lChoBkdAYLMRVZLZjGgHTegDaAhHQJIlT7j1f3N1fZQoaAZHQGejGCyyD7JoB03oA2gIR0CSJlDWsijddX2UKGgGR0Bl8FMqSX+maAdN6ANoCEdAkilhl18stnV9lChoBkdAYmoHbAUL2GgHTegDaAhHQJIp2DSPU8V1fZQoaAZHQGJ3dcKPXCloB03oA2gIR0CSLCmnwXqJdX2UKGgGR0BjQ1Jg9eQdaAdN6ANoCEdAki5rIT4+KXV9lChoBkdAYftNvfj0c2gHTegDaAhHQJIufmnwXqJ1fZQoaAZHQGbpFglWwNdoB03oA2gIR0CSPBTrVvuPdX2UKGgGR0BnI1SjxkNGaAdN6ANoCEdAkj1HBk7OmnV9lChoBkdAZoygHu7YkGgHTegDaAhHQJI++nLq2Sd1fZQoaAZHQF5lKpDNQj5oB03oA2gIR0CSP7uG9HtndX2UKGgGR0BnwYoTfzjFaAdN6ANoCEdAkkKPKdQO4HV9lChoBkdAZgebExZdOmgHTegDaAhHQJJciDZlFtt1fZQoaAZHQGDEAkC3gDRoB03oA2gIR0CSY2fJmukldX2UKGgGR0BdzGqDK5kLaAdN6ANoCEdAkmQbCm/Fi3V9lChoBkdAZGBsvZh8Y2gHTegDaAhHQJJza7OE/Sp1fZQoaAZHQGjKdWhh6SloB03oA2gIR0CSdWeiSJTEdX2UKGgGR0BmQg7NjbztaAdN6ANoCEdAknY5+MIeHXV9lChoBkdAY35W/ag262gHTegDaAhHQJJ4so0ALiN1fZQoaAZHQGb1I/JNj9ZoB03oA2gIR0CSeQ2F36hydX2UKGgGR0BhlYr1/Ue/aAdN6ANoCEdAknsU690zTHV9lChoBkdAZIZz+WGATmgHTegDaAhHQJJ9Bo0ygwp1fZQoaAZHQGI1Q0waisZoB03oA2gIR0CSfRVqN6w/dX2UKGgGR0BnWFyo4uK5aAdN6ANoCEdAkox+qrBCU3V9lChoBkdAZxDze40/GGgHTegDaAhHQJKOHrhR64V1fZQoaAZHQGa4cdgfEGZoB03oA2gIR0CSkH4FzMibdX2UKGgGR0BkwZWilBQfaAdN6ANoCEdAkpGmuTzNEHV9lChoBkdAXfXTtsvZiGgHTegDaAhHQJKVdWEK3NN1fZQoaAZHQFMGRV6u4gBoB0vXaAhHQJKbRtm+TNd1fZQoaAZHQGaBkdV/+bVoB03oA2gIR0CSrjn5BTn8dX2UKGgGR0Bj8OQ0XP7faAdN6ANoCEdAkrK4bjtG/nV9lChoBkdAZNjqTKT0QWgHTegDaAhHQJKzS+De0ol1fZQoaAZHQGWAbTMJQchoB03oA2gIR0CSwdEAHVwxdX2UKGgGR0BlLqSTyJ9BaAdN6ANoCEdAksRYsiB5HHV9lChoBkdAZVfcKPXCj2gHTegDaAhHQJLFdSvTw2F1fZQoaAZHQGJUhrvb48FoB03oA2gIR0CSyL3MINVjdX2UKGgGR0Bks6G8EmpmaAdN6ANoCEdAkskvhQ3xWnV9lChoBkdAZcvhb4agmWgHTegDaAhHQJLLEk8ifQN1fZQoaAZHQGXOALRa5gBoB03oA2gIR0CSzNc/t6X0dX2UKGgGR0BnnKE6DGtIaAdN6ANoCEdAkszmelKsdXV9lChoBkdAaHxO3UhFE2gHTegDaAhHQJLdGYAsCkp1fZQoaAZHQGP++2d/axpoB03oA2gIR0CS3vftx+8XdX2UKGgGR0Bh0IZ4wAU+aAdN6ANoCEdAkt/GAskIHHV9lChoBkdAY4/1e0G/vmgHTegDaAhHQJLivuUliSd1fZQoaAZHQF9tXYUWVNZoB03oA2gIR0CS6PHZ9NN8dX2UKGgGR0Bf0HxnWattaAdN6ANoCEdAkup+Z1FH8XV9lChoBkdAXARL39JjD2gHTegDaAhHQJMDwNhE0BR1fZQoaAZHQGh+20AtFrloB03oA2gIR0CTBGTwUg0TdX2UKGgGR0Bly/Zbpu/DaAdN6ANoCEdAkxL/4yoGZHV9lChoBkdAXOaAjIJZ4mgHTegDaAhHQJMU+xzJZGN1fZQoaAZHQGPJwdbPhQ5oB03oA2gIR0CTFcwhW5pbdX2UKGgGR0BhGuBas6q9aAdN6ANoCEdAkxgsZHd43XV9lChoBkdAaL7b0OEuhGgHTegDaAhHQJMYhGDtgKF1fZQoaAZHQGZGYkmhM8JoB03oA2gIR0CTGj6JqIrOdX2UKGgGR0BgV5dKNAC5aAdN6ANoCEdAkxv4f4h2XHV9lChoBkdAYgc5CF9KEmgHTegDaAhHQJMcBlWfbsZ1fZQoaAZHQGamiAtnPE9oB03oA2gIR0CTLns0pEx7dX2UKGgGR0Bk/oeo1k1/aAdN6ANoCEdAkzChgAp8W3V9lChoBkdAZzUf6GgzxmgHTegDaAhHQJMxbMHKOkt1fZQoaAZHQGeZHaWX1J1oB03oA2gIR0CTNGvLX+VDdX2UKGgGR0Bl66+De0ojaAdN6ANoCEdAkzqGKEWZZ3V9lChoBkdAYwyN7SiM52gHTegDaAhHQJM77qHGjsV1fZQoaAZHQGZo7D/EOy5oB03oA2gIR0CTUi13MY/FdX2UKGgGR0BejeaScLBsaAdN6ANoCEdAk1LH1J17pnV9lChoBkdAZqZvlU6xPmgHTegDaAhHQJNjH2ZiNKh1fZQoaAZHQGBn48+zMRpoB03oA2gIR0CTZNQ2/BWQdX2UKGgGR0BgYfAO8TSLaAdN6ANoCEdAk2WMg6ltTHV9lChoBkdAZoeBZpztC2gHTegDaAhHQJNnntWuHN51fZQoaAZHQGIRgood+5RoB03oA2gIR0CTZ+r1dxACdX2UKGgGR0Bl5rZtelbeaAdN6ANoCEdAk2l7LIPsiXV9lChoBkdAYdcX531SO2gHTegDaAhHQJNrKX1J17p1fZQoaAZHQFzeVXV9Wp9oB03oA2gIR0CTazcMVk+YdX2UKGgGR0BlSEqFyq+8aAdN6ANoCEdAk3laTr3TNXV9lChoBkdAZl6rXDm8umgHTegDaAhHQJN6/MB6rvN1fZQoaAZHQGZcvJiiItVoB03oA2gIR0CTe7BN21UmdX2UKGgGR0Bmrc+iaiK0aAdN6ANoCEdAk35Vt8/lhnV9lChoBkdAZVIp6QeV9mgHTegDaAhHQJOEHC3w1BN1fZQoaAZHQGOIQd8zAN5oB03oA2gIR0CThW3MINVjdWUu"
|
49 |
},
|
50 |
"ep_success_buffer": {
|
51 |
":type:": "<class 'collections.deque'>",
|
52 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
},
|
54 |
+
"_n_updates": 248,
|
55 |
"observation_space": {
|
56 |
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
|
|
77 |
"_np_random": null
|
78 |
},
|
79 |
"n_envs": 16,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
"vf_coef": 0.5,
|
85 |
"max_grad_norm": 0.5,
|
86 |
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
"clip_range": {
|
89 |
":type:": "<class 'function'>",
|
90 |
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
ppo-LunarLander-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 88362
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c08d155eefa58f08cf8aa1ce9ce1d59963e6b281bb4735e47fc704049986330e
|
3 |
size 88362
|
ppo-LunarLander-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 43762
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:573aac4f8f2a7e7030cdc92d75b7d10c01162daff3766ed77bd1a5aae030c3b0
|
3 |
size 43762
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 267.9926749, "std_reward": 27.004119518760533, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-08-26T23:31:57.734579"}
|