File size: 1,955 Bytes
a800e24
 
 
 
 
 
 
 
 
 
 
 
 
 
e5c53e3
a800e24
049491d
b767f64
 
 
a800e24
 
 
 
 
 
e5c53e3
a800e24
 
 
e5c53e3
a800e24
 
 
 
 
 
 
 
 
 
 
 
b767f64
a800e24
 
 
 
049491d
 
b767f64
 
 
a800e24
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: t5-small-finetuned-NL2ModelioMQ
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# t5-small-finetuned-NL2ModelioMQ

This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the ModelioMQ dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0000
- Rouge2 Precision: 0.9788
- Rouge2 Recall: 0.6053
- Rouge2 Fmeasure: 0.7294

## Model description


## Intended uses & limitations

This model will be used to assist [Modelio](https://www.modelio.org/) users in writing model queries in the ModelioMQ language.

## Training and evaluation data

The ModelioMQ dataset originates from 79 manually-written NL|ModelioMQ pairs, which have been augmentated using [NLPAug](https://github.com/makcedward/nlpaug)

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Rouge2 Precision | Rouge2 Recall | Rouge2 Fmeasure |
|:-------------:|:-----:|:-----:|:---------------:|:----------------:|:-------------:|:---------------:|
| 0.0104        | 1.0   | 4449  | 0.0006          | 0.9699           | 0.601         | 0.7235          |
| 0.002         | 2.0   | 8898  | 0.0000          | 0.9788           | 0.6053        | 0.7294          |
| 0.001         | 3.0   | 13347 | 0.0000          | 0.9788           | 0.6053        | 0.7294          |


### Framework versions

- Transformers 4.24.0
- Pytorch 1.12.1+cu113
- Tokenizers 0.13.2