File size: 1,955 Bytes
a800e24 e5c53e3 a800e24 049491d b767f64 a800e24 e5c53e3 a800e24 e5c53e3 a800e24 b767f64 a800e24 049491d b767f64 a800e24 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 |
---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: t5-small-finetuned-NL2ModelioMQ
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# t5-small-finetuned-NL2ModelioMQ
This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the ModelioMQ dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0000
- Rouge2 Precision: 0.9788
- Rouge2 Recall: 0.6053
- Rouge2 Fmeasure: 0.7294
## Model description
## Intended uses & limitations
This model will be used to assist [Modelio](https://www.modelio.org/) users in writing model queries in the ModelioMQ language.
## Training and evaluation data
The ModelioMQ dataset originates from 79 manually-written NL|ModelioMQ pairs, which have been augmentated using [NLPAug](https://github.com/makcedward/nlpaug)
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge2 Precision | Rouge2 Recall | Rouge2 Fmeasure |
|:-------------:|:-----:|:-----:|:---------------:|:----------------:|:-------------:|:---------------:|
| 0.0104 | 1.0 | 4449 | 0.0006 | 0.9699 | 0.601 | 0.7235 |
| 0.002 | 2.0 | 8898 | 0.0000 | 0.9788 | 0.6053 | 0.7294 |
| 0.001 | 3.0 | 13347 | 0.0000 | 0.9788 | 0.6053 | 0.7294 |
### Framework versions
- Transformers 4.24.0
- Pytorch 1.12.1+cu113
- Tokenizers 0.13.2
|