--- license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: val-vit-kitchen-shapes results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.3925233644859813 --- # val-vit-kitchen-shapes This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.4589 - Accuracy: 0.3925 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 10 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 60 | 1.4294 | 0.4393 | | No log | 2.0 | 120 | 1.4529 | 0.4019 | | No log | 3.0 | 180 | 1.4798 | 0.4112 | | No log | 4.0 | 240 | 1.4490 | 0.4206 | | No log | 5.0 | 300 | 1.4589 | 0.3925 | ### Framework versions - Transformers 4.39.0 - Pytorch 2.1.0 - Datasets 2.18.0 - Tokenizers 0.15.2