File size: 2,101 Bytes
817f386 cc3efe3 817f386 cc3efe3 817f386 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 |
---
license: apache-2.0
tags:
- audio-classification
- generated_from_trainer
datasets:
- superb
metrics:
- accuracy
model-index:
- name: wav2vec2-base-ks-padpt1600
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-base-ks-padpt1600
This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the superb dataset.
It achieves the following results on the evaluation set:
- Loss: 1.6019
- Accuracy: 0.6111
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.003
- train_batch_size: 256
- eval_batch_size: 256
- seed: 0
- gradient_accumulation_steps: 4
- total_train_batch_size: 1024
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.3499 | 1.0 | 50 | 1.6019 | 0.6111 |
| 0.9698 | 2.0 | 100 | 1.4349 | 0.5613 |
| 0.866 | 3.0 | 150 | 1.4232 | 0.5547 |
| 0.8162 | 4.0 | 200 | 1.5573 | 0.4675 |
| 0.7632 | 5.0 | 250 | 1.4991 | 0.4950 |
| 0.7461 | 6.0 | 300 | 1.4251 | 0.5321 |
| 0.7374 | 7.0 | 350 | 1.6291 | 0.4247 |
| 0.7237 | 8.0 | 400 | 1.5307 | 0.4797 |
| 0.7273 | 9.0 | 450 | 1.5635 | 0.4520 |
| 0.7007 | 10.0 | 500 | 1.5841 | 0.4497 |
### Framework versions
- Transformers 4.22.0.dev0
- Pytorch 1.11.0+cu115
- Datasets 2.4.0
- Tokenizers 0.12.1
|