abhishekmamdapure commited on
Commit
caa9d4a
·
1 Parent(s): 1dd00da

updated readme

Browse files
Files changed (1) hide show
  1. README.md +103 -3
README.md CHANGED
@@ -1,3 +1,103 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ## Pretrained Models
2
+ |**Sentence Length**|**Trained Tokens**|**Link**|
3
+ |----------|----------|----------|
4
+ |128|~11B|[BiGS-11B-128](https://drive.google.com/drive/folders/1-nhzeWVgpXwMyNEQ5j-MwJxSzwKyT2an?usp=sharing)
5
+ |128|~29B|[BiGS-29B-128](https://drive.google.com/drive/folders/10Mtl8_XUJb2mmHLyRC9x1wltdIWy6aaP?usp=sharing)
6
+ |128|~97B|[BiGS-97B-128](https://huggingface.co/JunxiongWang/BiGS_128)
7
+ |512|~108B|[BiGS-108B-512](https://huggingface.co/JunxiongWang/BiGS_512)
8
+ |1024|~110B|[BiGS-110B-1024](https://huggingface.co/JunxiongWang/BiGS_1024)
9
+ |4096|~110B|[BiGS-110B-4096](https://huggingface.co/JunxiongWang/BiGS_4096)
10
+
11
+ ### MNLI Checkpoints
12
+
13
+ |**Sentence Length**|**Trained Tokens**|**Model**|
14
+ |----------|----------|----------|
15
+ |128|~11B|[BiGS-11B-128MNLI](https://drive.google.com/drive/folders/1-tn5ar_tRi9DnK_bNMZtPpappUdNnVET?usp=sharing)
16
+ |128|~29B|[BiGS-29B-128MNLI](https://drive.google.com/drive/folders/116JwMbChYp9tBuPTz5jbiaulhXrXt1P2?usp=sharing)
17
+ |128|~97B|[BiGS-97B-128MNLI](https://huggingface.co/JunxiongWang/BiGS_128_MNLI)
18
+ |512|~108B|[BiGS-108B-512MNLI](https://huggingface.co/JunxiongWang/BiGS_512_MNLI)
19
+
20
+ <!-- Sentence length: 128
21
+
22
+ |**Training Tokens**|**Model**|
23
+ |----------|----------|
24
+ |~11B|[https://drive.google.com/drive/folders/1-nhzeWVgpXwMyNEQ5j-MwJxSzwKyT2an?usp=sharing](https://drive.google.com/drive/folders/1-nhzeWVgpXwMyNEQ5j-MwJxSzwKyT2an?usp=sharing)
25
+ |~29B|[https://drive.google.com/drive/folders/10Mtl8_XUJb2mmHLyRC9x1wltdIWy6aaP?usp=sharing](https://drive.google.com/drive/folders/10Mtl8_XUJb2mmHLyRC9x1wltdIWy6aaP?usp=sharing)
26
+ |~97B|[https://huggingface.co/JunxiongWang/BiGS_128](https://huggingface.co/JunxiongWang/BiGS_128)
27
+ -->
28
+
29
+ <!-- Sentence length: 512
30
+
31
+ |**Training Tokens**|**Model**|
32
+ |----------|----------|
33
+ |~108B|[https://huggingface.co/JunxiongWang/BiGS_512](https://huggingface.co/JunxiongWang/BiGS_512) -->
34
+
35
+ <!-- MNLI checkpoint:
36
+
37
+ |**Training Tokens**|**Model**|
38
+ |----------|----------|
39
+ |~108B|[https://huggingface.co/JunxiongWang/BiGS_512_MNLI](https://huggingface.co/JunxiongWang/BiGS_512_MNLI)
40
+
41
+ Sentence length: 1024
42
+
43
+ |**Training Tokens**|**Model**|
44
+ |----------|----------|
45
+ |~110B|[https://huggingface.co/JunxiongWang/BiGS_1024](https://huggingface.co/JunxiongWang/BiGS_1024)
46
+
47
+ Sentence length: 4096
48
+
49
+ |**Training Tokens**|**Model**|
50
+ |----------|----------|
51
+ |~110B|[https://huggingface.co/JunxiongWang/BiGS_4096](https://huggingface.co/JunxiongWang/BiGS_4096)
52
+ -->
53
+ ## Example Usage
54
+
55
+
56
+ ### Load Masked Language Model
57
+
58
+ ```python
59
+ import jax
60
+ from jax import numpy as jnp
61
+ from transformers import BertTokenizer
62
+ from BiGS.modeling_flax_bigs import FlaxBiGSForMaskedLM
63
+
64
+ tokenizer = BertTokenizer.from_pretrained('bert-large-uncased')
65
+ model = FlaxBiGSForMaskedLM.from_pretrained('JunxiongWang/BiGS_128')
66
+
67
+ text = "The goal of life is [MASK]."
68
+ encoded_input = tokenizer(text, return_tensors='np', padding='max_length', max_length=128)
69
+ output = model(**encoded_input)
70
+ tokenizer.convert_ids_to_tokens(jnp.flip(jnp.argsort(jax.nn.softmax(output.logits[encoded_input['input_ids']==103]))[0])[:10])
71
+ # output: ['happiness', 'love', 'peace', 'perfection', 'life', 'enlightenment', 'god', 'survival', 'freedom', 'good']
72
+ jnp.flip(jnp.sort(jax.nn.softmax(output.logits[encoded_input['input_ids']==103]))[0])[:10]
73
+ # probability: [0.16052087, 0.04306792, 0.03651363, 0.03468223, 0.02927081, 0.02549769, 0.02385132, 0.02261189, 0.01672831, 0.01619471]
74
+
75
+ text = "Paris is the [MASK] of France."
76
+ encoded_input = tokenizer(text, return_tensors='np', padding='max_length', max_length=128)
77
+ output = model(**encoded_input)
78
+ tokenizer.convert_ids_to_tokens(jnp.flip(jnp.argsort(jax.nn.softmax(output.logits[encoded_input['input_ids']==103]))[0])[:8])
79
+ # output: ['capital', 'centre', 'center', 'city', 'capitol', 'prefecture', 'headquarters', 'president', 'metropolis', 'heart']
80
+ jnp.flip(jnp.sort(jax.nn.softmax(output.logits[encoded_input['input_ids']==103]))[0])[:10]
81
+ # probability: [0.9981787 , 0.00034076, 0.00026992, 0.00026926, 0.00017787, 0.00004816, 0.00004256, 0.00003716, 0.00003634, 0.00002893]
82
+ ```
83
+
84
+ ### Load Sequence Classification Model
85
+
86
+ ```python
87
+ from BiGS.modeling_flax_bigs import FlaxBiGSForSequenceClassification
88
+ model = FlaxBiGSForSequenceClassification.from_pretrained('JunxiongWang/BiGS_512')
89
+ ```
90
+
91
+ ### Load Question Answering Model
92
+
93
+ ```python
94
+ from BiGS.modeling_flax_bigs import FlaxBiGSForQuestionAnswering
95
+ model = FlaxBiGSForQuestionAnswering.from_pretrained('JunxiongWang/BiGS_512')
96
+ ```
97
+
98
+ ### Load Multiple Choice Classification Model
99
+
100
+ ```python
101
+ from BiGS.modeling_flax_bigs import FlaxBiGSForMultipleChoice
102
+ model = FlaxBiGSForMultipleChoice.from_pretrained('JunxiongWang/BiGS_512')
103
+ ```