PyTorch
llama
alignment-handbook
Generated from Trainer
File size: 2,805 Bytes
5aa60eb
 
 
 
 
 
 
 
 
 
 
 
 
 
43044c5
 
5aa60eb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
---
base_model: JunxiongWang/llama3_0_50_mamba2_sft
tags:
- alignment-handbook
- generated_from_trainer
datasets:
- HuggingFaceH4/ultrafeedback_binarized
- HuggingFaceH4/orca_dpo_pairs
- JunxiongWang/llama3-ultrafeedback-armorm
model-index:
- name: JunxiongWang/Mamba2InLlama_0_50
  results: []
---

Please check [here](https://github.com/jxiw/MambaInLlama/tree/main) for details.

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/junxiong12/huggingface/runs/ovbim1mz)
# JunxiongWang/Mamba2InLlama_0_50

This model is a fine-tuned version of [JunxiongWang/llama3_0_50_mamba2_sft] on the HuggingFaceH4/ultrafeedback_binarized, the HuggingFaceH4/orca_dpo_pairs and the JunxiongWang/llama3-ultrafeedback-armorm datasets.
It achieves the following results on the evaluation set:
- Loss: 0.4340
- Rewards/chosen: -2.3310
- Rewards/rejected: -4.2908
- Rewards/accuracies: 0.8214
- Rewards/margins: 1.9598
- Logps/rejected: -707.1605
- Logps/chosen: -505.8361
- Logits/rejected: 1.0544
- Logits/chosen: 1.1061

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-07
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- total_train_batch_size: 32
- total_eval_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
|:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|
| 0.4605        | 0.4798 | 2000 | 0.4675          | -1.7509        | -3.3086          | 0.8107             | 1.5578          | -608.9371      | -447.8168    | 0.6185          | 0.6654        |
| 0.4475        | 0.9597 | 4000 | 0.4340          | -2.3310        | -4.2908          | 0.8214             | 1.9598          | -707.1605      | -505.8361    | 1.0544          | 1.1061        |


### Framework versions

- Transformers 4.43.1
- Pytorch 2.1.1+cu118
- Datasets 2.20.0
- Tokenizers 0.19.1