PyTorch
llama
alignment-handbook
Generated from Trainer
Mamba2InLlama_0_50 / README.md
JunxiongWang's picture
Update README.md
43044c5 verified
|
raw
history blame
2.81 kB
metadata
base_model: JunxiongWang/llama3_0_50_mamba2_sft
tags:
  - alignment-handbook
  - generated_from_trainer
datasets:
  - HuggingFaceH4/ultrafeedback_binarized
  - HuggingFaceH4/orca_dpo_pairs
  - JunxiongWang/llama3-ultrafeedback-armorm
model-index:
  - name: JunxiongWang/Mamba2InLlama_0_50
    results: []

Please check here for details.

Visualize in Weights & Biases

JunxiongWang/Mamba2InLlama_0_50

This model is a fine-tuned version of [JunxiongWang/llama3_0_50_mamba2_sft] on the HuggingFaceH4/ultrafeedback_binarized, the HuggingFaceH4/orca_dpo_pairs and the JunxiongWang/llama3-ultrafeedback-armorm datasets. It achieves the following results on the evaluation set:

  • Loss: 0.4340
  • Rewards/chosen: -2.3310
  • Rewards/rejected: -4.2908
  • Rewards/accuracies: 0.8214
  • Rewards/margins: 1.9598
  • Logps/rejected: -707.1605
  • Logps/chosen: -505.8361
  • Logits/rejected: 1.0544
  • Logits/chosen: 1.1061

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-07
  • train_batch_size: 4
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 8
  • total_train_batch_size: 32
  • total_eval_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss Rewards/chosen Rewards/rejected Rewards/accuracies Rewards/margins Logps/rejected Logps/chosen Logits/rejected Logits/chosen
0.4605 0.4798 2000 0.4675 -1.7509 -3.3086 0.8107 1.5578 -608.9371 -447.8168 0.6185 0.6654
0.4475 0.9597 4000 0.4340 -2.3310 -4.2908 0.8214 1.9598 -707.1605 -505.8361 1.0544 1.1061

Framework versions

  • Transformers 4.43.1
  • Pytorch 2.1.1+cu118
  • Datasets 2.20.0
  • Tokenizers 0.19.1