--- base_model: JunxiongWang/llama3_0_75_mamba2_sft tags: - alignment-handbook - generated_from_trainer datasets: - HuggingFaceH4/ultrafeedback_binarized - HuggingFaceH4/orca_dpo_pairs - JunxiongWang/llama3-ultrafeedback-armorm model-index: - name: JunxiongWang/Mamba2InLlama_0_75 results: [] --- Please check [here](https://github.com/jxiw/MambaInLlama/tree/main) for details. [Visualize in Weights & Biases](https://wandb.ai/junxiong12/huggingface/runs/24l27qc0) # JunxiongWang/Mamba2InLlama_0_75 This model is a fine-tuned version of [JunxiongWang/llama3_0_75_mamba2_sft]() on the HuggingFaceH4/ultrafeedback_binarized, the HuggingFaceH4/orca_dpo_pairs and the JunxiongWang/llama3-ultrafeedback-armorm datasets. It achieves the following results on the evaluation set: - Loss: 0.4695 - Rewards/chosen: -1.5489 - Rewards/rejected: -2.8730 - Rewards/accuracies: 0.8107 - Rewards/margins: 1.3240 - Logps/rejected: -589.1575 - Logps/chosen: -449.6615 - Logits/rejected: 1.1678 - Logits/chosen: 1.2259 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-07 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - total_train_batch_size: 32 - total_eval_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | |:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:| | 0.494 | 0.4798 | 2000 | 0.4938 | -1.4838 | -2.6084 | 0.7911 | 1.1246 | -562.7021 | -443.1515 | 1.1609 | 1.2167 | | 0.4911 | 0.9597 | 4000 | 0.4695 | -1.5489 | -2.8730 | 0.8107 | 1.3240 | -589.1575 | -449.6615 | 1.1678 | 1.2259 | ### Framework versions - Transformers 4.43.1 - Pytorch 2.1.1+cu118 - Datasets 2.20.0 - Tokenizers 0.19.1 [MambaInLlama](arxiv.org/abs/2408.15237) ``` @article{junxiongdaniele2024mambainllama, title = {The Mamba in the Llama: Distilling and Accelerating Hybrid Models}, author = {Junxiong Wang and Daniele Paliotta and Avner May and Alexander M. Rush and Tri Dao}, journal = {arXiv preprint arXiv:2408.15237}, year = {2024} } ```