Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
datasets:
|
4 |
+
- detection-datasets/coco
|
5 |
+
---
|
6 |
+
|
7 |
+
# Introduction
|
8 |
+
|
9 |
+
This repository stores the model for YOLOv4, compatible with Kalray's neural network API. </br>
|
10 |
+
Please see www.github.com/kalray/kann-models-zoo for details and proper usage. </br>
|
11 |
+
|
12 |
+
# Contents
|
13 |
+
|
14 |
+
- ONNX: yolov4.optimized.onnx
|
15 |
+
|
16 |
+
# Lecture note reference
|
17 |
+
|
18 |
+
+ YOLOv4: Optimal Speed and Accuracy of Object Detection, https://arxiv.org/pdf/2004.10934.pdf
|
19 |
+
|
20 |
+
# Repository or links references
|
21 |
+
|
22 |
+
- https://github.com/onnx/models/blob/main/vision/object_detection_segmentation/yolov4/model/yolov4.onnx
|
23 |
+
|
24 |
+
BibTeX entry and citation info
|
25 |
+
```
|
26 |
+
@misc{bochkovskiy2020yolov4,
|
27 |
+
title={YOLOv4: Optimal Speed and Accuracy of Object Detection},
|
28 |
+
author={Alexey Bochkovskiy and Chien-Yao Wang and Hong-Yuan Mark Liao},
|
29 |
+
year={2020},
|
30 |
+
eprint={2004.10934},
|
31 |
+
archivePrefix={arXiv},
|
32 |
+
primaryClass={cs.CV}
|
33 |
+
}
|
34 |
+
@InProceedings{Wang_2021_CVPR,
|
35 |
+
author = {Wang, Chien-Yao and Bochkovskiy, Alexey and Liao, Hong-Yuan Mark},
|
36 |
+
title = {{Scaled-YOLOv4}: Scaling Cross Stage Partial Network},
|
37 |
+
booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
|
38 |
+
month = {June},
|
39 |
+
year = {2021},
|
40 |
+
pages = {13029-13038}
|
41 |
+
}
|
42 |
+
```
|