File size: 125,460 Bytes
7e2b005 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"id": "6a6de8e2",
"metadata": {
"id": "6a6de8e2"
},
"outputs": [],
"source": [
"import warnings\n",
"warnings.filterwarnings('ignore')\n",
"import string\n",
"import re\n",
"from unicodedata import normalize\n",
"import numpy as np\n",
"from keras.preprocessing.text import Tokenizer\n",
"from keras.preprocessing.sequence import pad_sequences\n",
"from keras.utils import to_categorical\n",
"from keras.models import Sequential,load_model\n",
"from keras.layers import LSTM,Dense,Embedding,RepeatVector,TimeDistributed\n",
"from keras.callbacks import EarlyStopping\n",
"from keras.preprocessing.text import Tokenizer\n",
"from keras.preprocessing.sequence import pad_sequences\n",
"from nltk.translate.bleu_score import corpus_bleu\n",
"import pandas as pd\n",
"from string import punctuation\n",
"import matplotlib.pyplot as plt\n",
"from IPython.display import Markdown, display\n",
"\n",
"def printmd(string):\n",
" # Print with Markdowns\n",
" display(Markdown(string))"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "cNkcJJtCi_I4",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "cNkcJJtCi_I4",
"outputId": "76757ad6-0fed-4b84-9bde-1d7991ff10ee"
},
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Mounted at /content/drive\n"
]
}
],
"source": [
"from google.colab import drive\n",
"drive.mount('/content/drive')"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "d7439528",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 151
},
"id": "d7439528",
"outputId": "da232d2d-0551-4d62-bc4f-119456037d6a"
},
"outputs": [
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.Markdown object>"
],
"text/markdown": "## 10000 \"parallel sentences\" will be loaded (original sentence + its translation)"
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.Markdown object>"
],
"text/markdown": "## 9000 \"parallel sentences\" will be used to train the model"
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.Markdown object>"
],
"text/markdown": "## 1000 \"parallel sentences\" will be used to test the model"
},
"metadata": {}
}
],
"source": [
"total_sentences = 10000\n",
"\n",
"# Load the dataset\n",
"dataset = pd.read_csv(\"/content/drive/MyDrive/Colab Notebooks/Dataset/eng_-french.csv\", nrows = total_sentences)\n",
"\n",
"# What proportion of the sentences will be used for the test set\n",
"test_proportion = 0.1\n",
"train_test_threshold = int( (1-test_proportion) * total_sentences)\n",
"\n",
"printmd(f'## {total_sentences} \"parallel sentences\" will be loaded (original sentence + its translation)')\n",
"printmd(f'## {train_test_threshold} \"parallel sentences\" will be used to train the model')\n",
"printmd(f'## {total_sentences-train_test_threshold} \"parallel sentences\" will be used to test the model')"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "5cf29feb",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 363
},
"id": "5cf29feb",
"outputId": "72534a51-013d-4569-8043-d1fbb474675c"
},
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
" English words/sentences French words/sentences\n",
"1554 Let me die. Laisse-moi mourir.\n",
"2087 He's a slob. C'est un flemmard.\n",
"5470 I have to try. Il faut que j'essaie.\n",
"2363 I was naive. Je fus crédule.\n",
"7570 He is bankrupt. Il est en faillite.\n",
"6427 That's a fact. C'est un fait.\n",
"1651 Talk to me! Parlez-moi !\n",
"4164 Keep talking. Continuez de parler.\n",
"1231 I broke it. Je l'ai cassée.\n",
"9232 Tom is a judge. Tom est juge."
],
"text/html": [
"\n",
" <div id=\"df-8da381e6-eb45-46bb-bd3b-11fd8ddba248\" class=\"colab-df-container\">\n",
" <div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>English words/sentences</th>\n",
" <th>French words/sentences</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>1554</th>\n",
" <td>Let me die.</td>\n",
" <td>Laisse-moi mourir.</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2087</th>\n",
" <td>He's a slob.</td>\n",
" <td>C'est un flemmard.</td>\n",
" </tr>\n",
" <tr>\n",
" <th>5470</th>\n",
" <td>I have to try.</td>\n",
" <td>Il faut que j'essaie.</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2363</th>\n",
" <td>I was naive.</td>\n",
" <td>Je fus crédule.</td>\n",
" </tr>\n",
" <tr>\n",
" <th>7570</th>\n",
" <td>He is bankrupt.</td>\n",
" <td>Il est en faillite.</td>\n",
" </tr>\n",
" <tr>\n",
" <th>6427</th>\n",
" <td>That's a fact.</td>\n",
" <td>C'est un fait.</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1651</th>\n",
" <td>Talk to me!</td>\n",
" <td>Parlez-moi !</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4164</th>\n",
" <td>Keep talking.</td>\n",
" <td>Continuez de parler.</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1231</th>\n",
" <td>I broke it.</td>\n",
" <td>Je l'ai cassée.</td>\n",
" </tr>\n",
" <tr>\n",
" <th>9232</th>\n",
" <td>Tom is a judge.</td>\n",
" <td>Tom est juge.</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>\n",
" <div class=\"colab-df-buttons\">\n",
"\n",
" <div class=\"colab-df-container\">\n",
" <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-8da381e6-eb45-46bb-bd3b-11fd8ddba248')\"\n",
" title=\"Convert this dataframe to an interactive table.\"\n",
" style=\"display:none;\">\n",
"\n",
" <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\" viewBox=\"0 -960 960 960\">\n",
" <path d=\"M120-120v-720h720v720H120Zm60-500h600v-160H180v160Zm220 220h160v-160H400v160Zm0 220h160v-160H400v160ZM180-400h160v-160H180v160Zm440 0h160v-160H620v160ZM180-180h160v-160H180v160Zm440 0h160v-160H620v160Z\"/>\n",
" </svg>\n",
" </button>\n",
"\n",
" <style>\n",
" .colab-df-container {\n",
" display:flex;\n",
" gap: 12px;\n",
" }\n",
"\n",
" .colab-df-convert {\n",
" background-color: #E8F0FE;\n",
" border: none;\n",
" border-radius: 50%;\n",
" cursor: pointer;\n",
" display: none;\n",
" fill: #1967D2;\n",
" height: 32px;\n",
" padding: 0 0 0 0;\n",
" width: 32px;\n",
" }\n",
"\n",
" .colab-df-convert:hover {\n",
" background-color: #E2EBFA;\n",
" box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
" fill: #174EA6;\n",
" }\n",
"\n",
" .colab-df-buttons div {\n",
" margin-bottom: 4px;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-convert {\n",
" background-color: #3B4455;\n",
" fill: #D2E3FC;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-convert:hover {\n",
" background-color: #434B5C;\n",
" box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n",
" filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n",
" fill: #FFFFFF;\n",
" }\n",
" </style>\n",
"\n",
" <script>\n",
" const buttonEl =\n",
" document.querySelector('#df-8da381e6-eb45-46bb-bd3b-11fd8ddba248 button.colab-df-convert');\n",
" buttonEl.style.display =\n",
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
"\n",
" async function convertToInteractive(key) {\n",
" const element = document.querySelector('#df-8da381e6-eb45-46bb-bd3b-11fd8ddba248');\n",
" const dataTable =\n",
" await google.colab.kernel.invokeFunction('convertToInteractive',\n",
" [key], {});\n",
" if (!dataTable) return;\n",
"\n",
" const docLinkHtml = 'Like what you see? Visit the ' +\n",
" '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n",
" + ' to learn more about interactive tables.';\n",
" element.innerHTML = '';\n",
" dataTable['output_type'] = 'display_data';\n",
" await google.colab.output.renderOutput(dataTable, element);\n",
" const docLink = document.createElement('div');\n",
" docLink.innerHTML = docLinkHtml;\n",
" element.appendChild(docLink);\n",
" }\n",
" </script>\n",
" </div>\n",
"\n",
"\n",
"<div id=\"df-79465a6b-a357-4d71-a8ce-b00949d6d5f5\">\n",
" <button class=\"colab-df-quickchart\" onclick=\"quickchart('df-79465a6b-a357-4d71-a8ce-b00949d6d5f5')\"\n",
" title=\"Suggest charts\"\n",
" style=\"display:none;\">\n",
"\n",
"<svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n",
" width=\"24px\">\n",
" <g>\n",
" <path d=\"M19 3H5c-1.1 0-2 .9-2 2v14c0 1.1.9 2 2 2h14c1.1 0 2-.9 2-2V5c0-1.1-.9-2-2-2zM9 17H7v-7h2v7zm4 0h-2V7h2v10zm4 0h-2v-4h2v4z\"/>\n",
" </g>\n",
"</svg>\n",
" </button>\n",
"\n",
"<style>\n",
" .colab-df-quickchart {\n",
" --bg-color: #E8F0FE;\n",
" --fill-color: #1967D2;\n",
" --hover-bg-color: #E2EBFA;\n",
" --hover-fill-color: #174EA6;\n",
" --disabled-fill-color: #AAA;\n",
" --disabled-bg-color: #DDD;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-quickchart {\n",
" --bg-color: #3B4455;\n",
" --fill-color: #D2E3FC;\n",
" --hover-bg-color: #434B5C;\n",
" --hover-fill-color: #FFFFFF;\n",
" --disabled-bg-color: #3B4455;\n",
" --disabled-fill-color: #666;\n",
" }\n",
"\n",
" .colab-df-quickchart {\n",
" background-color: var(--bg-color);\n",
" border: none;\n",
" border-radius: 50%;\n",
" cursor: pointer;\n",
" display: none;\n",
" fill: var(--fill-color);\n",
" height: 32px;\n",
" padding: 0;\n",
" width: 32px;\n",
" }\n",
"\n",
" .colab-df-quickchart:hover {\n",
" background-color: var(--hover-bg-color);\n",
" box-shadow: 0 1px 2px rgba(60, 64, 67, 0.3), 0 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
" fill: var(--button-hover-fill-color);\n",
" }\n",
"\n",
" .colab-df-quickchart-complete:disabled,\n",
" .colab-df-quickchart-complete:disabled:hover {\n",
" background-color: var(--disabled-bg-color);\n",
" fill: var(--disabled-fill-color);\n",
" box-shadow: none;\n",
" }\n",
"\n",
" .colab-df-spinner {\n",
" border: 2px solid var(--fill-color);\n",
" border-color: transparent;\n",
" border-bottom-color: var(--fill-color);\n",
" animation:\n",
" spin 1s steps(1) infinite;\n",
" }\n",
"\n",
" @keyframes spin {\n",
" 0% {\n",
" border-color: transparent;\n",
" border-bottom-color: var(--fill-color);\n",
" border-left-color: var(--fill-color);\n",
" }\n",
" 20% {\n",
" border-color: transparent;\n",
" border-left-color: var(--fill-color);\n",
" border-top-color: var(--fill-color);\n",
" }\n",
" 30% {\n",
" border-color: transparent;\n",
" border-left-color: var(--fill-color);\n",
" border-top-color: var(--fill-color);\n",
" border-right-color: var(--fill-color);\n",
" }\n",
" 40% {\n",
" border-color: transparent;\n",
" border-right-color: var(--fill-color);\n",
" border-top-color: var(--fill-color);\n",
" }\n",
" 60% {\n",
" border-color: transparent;\n",
" border-right-color: var(--fill-color);\n",
" }\n",
" 80% {\n",
" border-color: transparent;\n",
" border-right-color: var(--fill-color);\n",
" border-bottom-color: var(--fill-color);\n",
" }\n",
" 90% {\n",
" border-color: transparent;\n",
" border-bottom-color: var(--fill-color);\n",
" }\n",
" }\n",
"</style>\n",
"\n",
" <script>\n",
" async function quickchart(key) {\n",
" const quickchartButtonEl =\n",
" document.querySelector('#' + key + ' button');\n",
" quickchartButtonEl.disabled = true; // To prevent multiple clicks.\n",
" quickchartButtonEl.classList.add('colab-df-spinner');\n",
" try {\n",
" const charts = await google.colab.kernel.invokeFunction(\n",
" 'suggestCharts', [key], {});\n",
" } catch (error) {\n",
" console.error('Error during call to suggestCharts:', error);\n",
" }\n",
" quickchartButtonEl.classList.remove('colab-df-spinner');\n",
" quickchartButtonEl.classList.add('colab-df-quickchart-complete');\n",
" }\n",
" (() => {\n",
" let quickchartButtonEl =\n",
" document.querySelector('#df-79465a6b-a357-4d71-a8ce-b00949d6d5f5 button');\n",
" quickchartButtonEl.style.display =\n",
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
" })();\n",
" </script>\n",
"</div>\n",
"\n",
" </div>\n",
" </div>\n"
],
"application/vnd.google.colaboratory.intrinsic+json": {
"type": "dataframe",
"summary": "{\n \"name\": \"dataset\",\n \"rows\": 10,\n \"fields\": [\n {\n \"column\": \"English words/sentences\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 10,\n \"samples\": [\n \"I broke it.\",\n \"He's a slob.\",\n \"That's a fact.\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"French words/sentences\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 10,\n \"samples\": [\n \"Je l'ai cass\\u00e9e.\",\n \"C'est un flemmard.\",\n \"C'est un fait.\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}"
}
},
"metadata": {},
"execution_count": 4
}
],
"source": [
"# Shuffle the dataset\n",
"dataset = dataset.sample(frac=1, random_state=0)\n",
"dataset.iloc[1000:1010]"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "33f574a5",
"metadata": {
"id": "33f574a5"
},
"outputs": [],
"source": [
"def clean(string):\n",
" # Clean the string\n",
" string = string.replace(\"\\u202f\",\" \") # Replace no-break space with space\n",
" string = string.lower()\n",
"\n",
" # Delete the punctuation and the numbers\n",
" for p in punctuation + \"«»\" + \"0123456789\":\n",
" string = string.replace(p,\" \")\n",
"\n",
" string = re.sub('\\s+',' ', string)\n",
" string = string.strip()\n",
"\n",
" return string\n",
"\n",
"# Clean the sentences\n",
"dataset[\"English words/sentences\"] = dataset[\"English words/sentences\"].apply(lambda x: clean(x))\n",
"dataset[\"French words/sentences\"] = dataset[\"French words/sentences\"].apply(lambda x: clean(x))\n",
"\n",
"# Select one part of the dataset\n",
"dataset = dataset.values\n",
"dataset = dataset[:total_sentences]\n",
"\n",
"# split into train/test\n",
"train, test = dataset[:train_test_threshold], dataset[train_test_threshold:]\n",
"\n",
"# Define the name of the source and of the target\n",
"# This will be used in the outputs of this notebook\n",
"source_str, target_str = \"French\", \"English\"\n",
"\n",
"# The index in the numpy array of the source and of the target\n",
"idx_src, idx_tar = 1, 0\n"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "ZdkiZ76oSt34",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 363
},
"id": "ZdkiZ76oSt34",
"outputId": "a3e74a90-561e-48b7-9959-50ee1d697bc0"
},
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
" 0 1\n",
"0 let me die laisse moi mourir\n",
"1 he s a slob c est un flemmard\n",
"2 i have to try il faut que j essaie\n",
"3 i was naive je fus crédule\n",
"4 he is bankrupt il est en faillite\n",
"5 that s a fact c est un fait\n",
"6 talk to me parlez moi\n",
"7 keep talking continuez de parler\n",
"8 i broke it je l ai cassée\n",
"9 tom is a judge tom est juge"
],
"text/html": [
"\n",
" <div id=\"df-96b52a81-6b1e-4e18-b942-f68ddef899c6\" class=\"colab-df-container\">\n",
" <div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>0</th>\n",
" <th>1</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>let me die</td>\n",
" <td>laisse moi mourir</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>he s a slob</td>\n",
" <td>c est un flemmard</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>i have to try</td>\n",
" <td>il faut que j essaie</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>i was naive</td>\n",
" <td>je fus crédule</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>he is bankrupt</td>\n",
" <td>il est en faillite</td>\n",
" </tr>\n",
" <tr>\n",
" <th>5</th>\n",
" <td>that s a fact</td>\n",
" <td>c est un fait</td>\n",
" </tr>\n",
" <tr>\n",
" <th>6</th>\n",
" <td>talk to me</td>\n",
" <td>parlez moi</td>\n",
" </tr>\n",
" <tr>\n",
" <th>7</th>\n",
" <td>keep talking</td>\n",
" <td>continuez de parler</td>\n",
" </tr>\n",
" <tr>\n",
" <th>8</th>\n",
" <td>i broke it</td>\n",
" <td>je l ai cassée</td>\n",
" </tr>\n",
" <tr>\n",
" <th>9</th>\n",
" <td>tom is a judge</td>\n",
" <td>tom est juge</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>\n",
" <div class=\"colab-df-buttons\">\n",
"\n",
" <div class=\"colab-df-container\">\n",
" <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-96b52a81-6b1e-4e18-b942-f68ddef899c6')\"\n",
" title=\"Convert this dataframe to an interactive table.\"\n",
" style=\"display:none;\">\n",
"\n",
" <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\" viewBox=\"0 -960 960 960\">\n",
" <path d=\"M120-120v-720h720v720H120Zm60-500h600v-160H180v160Zm220 220h160v-160H400v160Zm0 220h160v-160H400v160ZM180-400h160v-160H180v160Zm440 0h160v-160H620v160ZM180-180h160v-160H180v160Zm440 0h160v-160H620v160Z\"/>\n",
" </svg>\n",
" </button>\n",
"\n",
" <style>\n",
" .colab-df-container {\n",
" display:flex;\n",
" gap: 12px;\n",
" }\n",
"\n",
" .colab-df-convert {\n",
" background-color: #E8F0FE;\n",
" border: none;\n",
" border-radius: 50%;\n",
" cursor: pointer;\n",
" display: none;\n",
" fill: #1967D2;\n",
" height: 32px;\n",
" padding: 0 0 0 0;\n",
" width: 32px;\n",
" }\n",
"\n",
" .colab-df-convert:hover {\n",
" background-color: #E2EBFA;\n",
" box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
" fill: #174EA6;\n",
" }\n",
"\n",
" .colab-df-buttons div {\n",
" margin-bottom: 4px;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-convert {\n",
" background-color: #3B4455;\n",
" fill: #D2E3FC;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-convert:hover {\n",
" background-color: #434B5C;\n",
" box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n",
" filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n",
" fill: #FFFFFF;\n",
" }\n",
" </style>\n",
"\n",
" <script>\n",
" const buttonEl =\n",
" document.querySelector('#df-96b52a81-6b1e-4e18-b942-f68ddef899c6 button.colab-df-convert');\n",
" buttonEl.style.display =\n",
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
"\n",
" async function convertToInteractive(key) {\n",
" const element = document.querySelector('#df-96b52a81-6b1e-4e18-b942-f68ddef899c6');\n",
" const dataTable =\n",
" await google.colab.kernel.invokeFunction('convertToInteractive',\n",
" [key], {});\n",
" if (!dataTable) return;\n",
"\n",
" const docLinkHtml = 'Like what you see? Visit the ' +\n",
" '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n",
" + ' to learn more about interactive tables.';\n",
" element.innerHTML = '';\n",
" dataTable['output_type'] = 'display_data';\n",
" await google.colab.output.renderOutput(dataTable, element);\n",
" const docLink = document.createElement('div');\n",
" docLink.innerHTML = docLinkHtml;\n",
" element.appendChild(docLink);\n",
" }\n",
" </script>\n",
" </div>\n",
"\n",
"\n",
"<div id=\"df-4f0181c4-ead5-43f5-bd23-48feb5d17177\">\n",
" <button class=\"colab-df-quickchart\" onclick=\"quickchart('df-4f0181c4-ead5-43f5-bd23-48feb5d17177')\"\n",
" title=\"Suggest charts\"\n",
" style=\"display:none;\">\n",
"\n",
"<svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n",
" width=\"24px\">\n",
" <g>\n",
" <path d=\"M19 3H5c-1.1 0-2 .9-2 2v14c0 1.1.9 2 2 2h14c1.1 0 2-.9 2-2V5c0-1.1-.9-2-2-2zM9 17H7v-7h2v7zm4 0h-2V7h2v10zm4 0h-2v-4h2v4z\"/>\n",
" </g>\n",
"</svg>\n",
" </button>\n",
"\n",
"<style>\n",
" .colab-df-quickchart {\n",
" --bg-color: #E8F0FE;\n",
" --fill-color: #1967D2;\n",
" --hover-bg-color: #E2EBFA;\n",
" --hover-fill-color: #174EA6;\n",
" --disabled-fill-color: #AAA;\n",
" --disabled-bg-color: #DDD;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-quickchart {\n",
" --bg-color: #3B4455;\n",
" --fill-color: #D2E3FC;\n",
" --hover-bg-color: #434B5C;\n",
" --hover-fill-color: #FFFFFF;\n",
" --disabled-bg-color: #3B4455;\n",
" --disabled-fill-color: #666;\n",
" }\n",
"\n",
" .colab-df-quickchart {\n",
" background-color: var(--bg-color);\n",
" border: none;\n",
" border-radius: 50%;\n",
" cursor: pointer;\n",
" display: none;\n",
" fill: var(--fill-color);\n",
" height: 32px;\n",
" padding: 0;\n",
" width: 32px;\n",
" }\n",
"\n",
" .colab-df-quickchart:hover {\n",
" background-color: var(--hover-bg-color);\n",
" box-shadow: 0 1px 2px rgba(60, 64, 67, 0.3), 0 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
" fill: var(--button-hover-fill-color);\n",
" }\n",
"\n",
" .colab-df-quickchart-complete:disabled,\n",
" .colab-df-quickchart-complete:disabled:hover {\n",
" background-color: var(--disabled-bg-color);\n",
" fill: var(--disabled-fill-color);\n",
" box-shadow: none;\n",
" }\n",
"\n",
" .colab-df-spinner {\n",
" border: 2px solid var(--fill-color);\n",
" border-color: transparent;\n",
" border-bottom-color: var(--fill-color);\n",
" animation:\n",
" spin 1s steps(1) infinite;\n",
" }\n",
"\n",
" @keyframes spin {\n",
" 0% {\n",
" border-color: transparent;\n",
" border-bottom-color: var(--fill-color);\n",
" border-left-color: var(--fill-color);\n",
" }\n",
" 20% {\n",
" border-color: transparent;\n",
" border-left-color: var(--fill-color);\n",
" border-top-color: var(--fill-color);\n",
" }\n",
" 30% {\n",
" border-color: transparent;\n",
" border-left-color: var(--fill-color);\n",
" border-top-color: var(--fill-color);\n",
" border-right-color: var(--fill-color);\n",
" }\n",
" 40% {\n",
" border-color: transparent;\n",
" border-right-color: var(--fill-color);\n",
" border-top-color: var(--fill-color);\n",
" }\n",
" 60% {\n",
" border-color: transparent;\n",
" border-right-color: var(--fill-color);\n",
" }\n",
" 80% {\n",
" border-color: transparent;\n",
" border-right-color: var(--fill-color);\n",
" border-bottom-color: var(--fill-color);\n",
" }\n",
" 90% {\n",
" border-color: transparent;\n",
" border-bottom-color: var(--fill-color);\n",
" }\n",
" }\n",
"</style>\n",
"\n",
" <script>\n",
" async function quickchart(key) {\n",
" const quickchartButtonEl =\n",
" document.querySelector('#' + key + ' button');\n",
" quickchartButtonEl.disabled = true; // To prevent multiple clicks.\n",
" quickchartButtonEl.classList.add('colab-df-spinner');\n",
" try {\n",
" const charts = await google.colab.kernel.invokeFunction(\n",
" 'suggestCharts', [key], {});\n",
" } catch (error) {\n",
" console.error('Error during call to suggestCharts:', error);\n",
" }\n",
" quickchartButtonEl.classList.remove('colab-df-spinner');\n",
" quickchartButtonEl.classList.add('colab-df-quickchart-complete');\n",
" }\n",
" (() => {\n",
" let quickchartButtonEl =\n",
" document.querySelector('#df-4f0181c4-ead5-43f5-bd23-48feb5d17177 button');\n",
" quickchartButtonEl.style.display =\n",
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
" })();\n",
" </script>\n",
"</div>\n",
"\n",
" </div>\n",
" </div>\n"
],
"application/vnd.google.colaboratory.intrinsic+json": {
"type": "dataframe",
"summary": "{\n \"name\": \"pd\",\n \"rows\": 10,\n \"fields\": [\n {\n \"column\": 0,\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 10,\n \"samples\": [\n \"i broke it\",\n \"he s a slob\",\n \"that s a fact\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": 1,\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 10,\n \"samples\": [\n \"je l ai cass\\u00e9e\",\n \"c est un flemmard\",\n \"c est un fait\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}"
}
},
"metadata": {},
"execution_count": 6
}
],
"source": [
"# Display the result after cleaning\n",
"pd.DataFrame(dataset[1000:1010])"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "275b13e8",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 116
},
"id": "275b13e8",
"outputId": "3e708cc0-7e3d-426d-cf56-304df00e544b"
},
"outputs": [
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.Markdown object>"
],
"text/markdown": "\nTarget (English) Vocabulary Size: 2099"
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.Markdown object>"
],
"text/markdown": "Target (English) Max Length: 5"
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.Markdown object>"
],
"text/markdown": "\nSource (French) Vocabulary Size: 4039"
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.Markdown object>"
],
"text/markdown": "Source (French) Max Length: 12\n"
},
"metadata": {}
}
],
"source": [
"def create_tokenizer(lines):\n",
" # fit a tokenizer\n",
" tokenizer = Tokenizer()\n",
" tokenizer.fit_on_texts(lines)\n",
" return tokenizer\n",
"\n",
"def max_len(lines):\n",
" # max sentence length\n",
" return max(len(line.split()) for line in lines)\n",
"\n",
"def encode_sequences(tokenizer, length, lines):\n",
" # encode and pad sequences\n",
" X = tokenizer.texts_to_sequences(lines) # integer encode sequences\n",
" X = pad_sequences(X, maxlen=length, padding='post') # pad sequences with 0 values\n",
" return X\n",
"\n",
"def encode_output(sequences, vocab_size):\n",
" # one hot encode target sequence\n",
" ylist = list()\n",
" for sequence in sequences:\n",
" encoded = to_categorical(sequence, num_classes=vocab_size)\n",
" ylist.append(encoded)\n",
" y = np.array(ylist)\n",
" y = y.reshape(sequences.shape[0], sequences.shape[1], vocab_size)\n",
" return y\n",
"\n",
"# Prepare target tokenizer\n",
"tar_tokenizer = create_tokenizer(dataset[:, idx_tar])\n",
"tar_vocab_size = len(tar_tokenizer.word_index) + 1\n",
"tar_length = max_len(dataset[:, idx_tar])\n",
"printmd(f'\\nTarget ({target_str}) Vocabulary Size: {tar_vocab_size}')\n",
"printmd(f'Target ({target_str}) Max Length: {tar_length}')\n",
"\n",
"# Prepare source tokenizer\n",
"src_tokenizer = create_tokenizer(dataset[:, idx_src])\n",
"src_vocab_size = len(src_tokenizer.word_index) + 1\n",
"src_length = max_len(dataset[:, idx_src])\n",
"printmd(f'\\nSource ({source_str}) Vocabulary Size: {src_vocab_size}')\n",
"printmd(f'Source ({source_str}) Max Length: {src_length}\\n')\n",
"\n",
"# Prepare training data\n",
"trainX = encode_sequences(src_tokenizer, src_length, train[:, idx_src])\n",
"trainY = encode_sequences(tar_tokenizer, tar_length, train[:, idx_tar])\n",
"trainY = encode_output(trainY, tar_vocab_size)\n",
"\n",
"# Prepare test data\n",
"testX = encode_sequences(src_tokenizer, src_length, test[:, idx_src])\n",
"testY = encode_sequences(tar_tokenizer, tar_length, test[:, idx_tar])\n",
"testY = encode_output(testY, tar_vocab_size)"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "06fb69d9",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "06fb69d9",
"outputId": "ec5dffb6-3bb9-43f0-847d-f9719f1999d5"
},
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Epoch 1/20\n",
"127/127 [==============================] - 32s 184ms/step - loss: 4.3580 - val_loss: 3.5034\n",
"Epoch 2/20\n",
"127/127 [==============================] - 20s 159ms/step - loss: 3.3180 - val_loss: 3.2966\n",
"Epoch 3/20\n",
"127/127 [==============================] - 29s 232ms/step - loss: 3.1166 - val_loss: 3.1305\n",
"Epoch 4/20\n",
"127/127 [==============================] - 22s 174ms/step - loss: 2.9387 - val_loss: 3.0357\n",
"Epoch 5/20\n",
"127/127 [==============================] - 20s 160ms/step - loss: 2.8170 - val_loss: 2.9482\n",
"Epoch 6/20\n",
"127/127 [==============================] - 22s 171ms/step - loss: 2.7020 - val_loss: 2.8696\n",
"Epoch 7/20\n",
"127/127 [==============================] - 21s 162ms/step - loss: 2.5850 - val_loss: 2.7787\n",
"Epoch 8/20\n",
"127/127 [==============================] - 22s 171ms/step - loss: 2.4499 - val_loss: 2.7062\n",
"Epoch 9/20\n",
"127/127 [==============================] - 22s 177ms/step - loss: 2.3151 - val_loss: 2.5752\n",
"Epoch 10/20\n",
"127/127 [==============================] - 21s 163ms/step - loss: 2.1780 - val_loss: 2.4899\n",
"Epoch 11/20\n",
"127/127 [==============================] - 22s 171ms/step - loss: 2.0454 - val_loss: 2.3923\n",
"Epoch 12/20\n",
"127/127 [==============================] - 20s 160ms/step - loss: 1.9261 - val_loss: 2.3220\n",
"Epoch 13/20\n",
"127/127 [==============================] - 22s 175ms/step - loss: 1.8146 - val_loss: 2.2600\n",
"Epoch 14/20\n",
"127/127 [==============================] - 20s 160ms/step - loss: 1.7014 - val_loss: 2.1994\n",
"Epoch 15/20\n",
"127/127 [==============================] - 22s 171ms/step - loss: 1.5957 - val_loss: 2.1526\n",
"Epoch 16/20\n",
"127/127 [==============================] - 20s 160ms/step - loss: 1.4959 - val_loss: 2.1011\n",
"Epoch 17/20\n",
"127/127 [==============================] - 22s 173ms/step - loss: 1.4070 - val_loss: 2.0468\n",
"Epoch 18/20\n",
"127/127 [==============================] - 20s 160ms/step - loss: 1.3184 - val_loss: 2.0204\n",
"Epoch 19/20\n",
"127/127 [==============================] - 22s 170ms/step - loss: 1.2317 - val_loss: 1.9782\n",
"Epoch 20/20\n",
"127/127 [==============================] - 20s 161ms/step - loss: 1.1525 - val_loss: 1.9759\n"
]
}
],
"source": [
"def create_model(src_vocab, tar_vocab, src_timesteps, tar_timesteps, n_units):\n",
" # Create the model\n",
" model = Sequential()\n",
" model.add(Embedding(src_vocab_size, n_units, input_length=src_length, mask_zero=True))\n",
" model.add(LSTM(n_units))\n",
" model.add(RepeatVector(tar_timesteps))\n",
" model.add(LSTM(n_units, return_sequences=True))\n",
" model.add(TimeDistributed(Dense(tar_vocab, activation='softmax')))\n",
" return model\n",
"\n",
"# Create model\n",
"model = create_model(src_vocab_size, tar_vocab_size, src_length, tar_length, 256)\n",
"model.compile(optimizer='adam', loss='categorical_crossentropy')\n",
"\n",
"history = model.fit(trainX,\n",
" trainY,\n",
" epochs=20,\n",
" batch_size=64,\n",
" validation_split=0.1,\n",
" verbose=1,\n",
" callbacks=[\n",
" EarlyStopping(\n",
" monitor='val_loss',\n",
" patience=10,\n",
" restore_best_weights=True\n",
" )\n",
" ])"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "6b90c23c",
"metadata": {
"id": "6b90c23c",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 452
},
"outputId": "07f0bc72-13d7-4709-c8e4-ed4cd1bbfb85"
},
"outputs": [
{
"output_type": "display_data",
"data": {
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
],
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGzCAYAAAD9pBdvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABb3ElEQVR4nO3dd3hUZd7G8e+kF1IIkEZCTQghEHpXQAFpUuwoK2Lb1UVXbOuy71rQXWPfde0VbIhlpQgoIFKkKDVIDS0kAVJoSUhC2sx5/ziQGEkgCUkmk9yf65pLc+Y5M7/DYTI35zzFYhiGgYiIiIidONm7ABEREWncFEZERETErhRGRERExK4URkRERMSuFEZERETErhRGRERExK4URkRERMSuFEZERETErhRGRERExK4URkRERMSuFEZE5JLMmjULi8XCpk2b7F2KiDgohRERERGxK4URERERsSuFERGpdVu3bmXUqFH4+vrSpEkThg4dys8//1ymTVFRETNmzCAyMhIPDw+aNWvGZZddxrJly0rapKWlcfvttxMWFoa7uzshISGMHz+eQ4cO1fERiUhNcrF3ASLSsO3cuZPLL78cX19f/vrXv+Lq6so777zDkCFDWLVqFX379gXgqaeeIi4ujrvuuos+ffqQnZ3Npk2b2LJlC8OHDwfguuuuY+fOndx///20adOGjIwMli1bRnJyMm3atLHjUYrIpbAYhmHYuwgRcVyzZs3i9ttvZ+PGjfTq1eu856+55hoWL17M7t27adeuHQCpqalERUXRvXt3Vq1aBUC3bt0ICwtj4cKF5b5PZmYmTZs25cUXX+SRRx6pvQMSkTqn2zQiUmusVitLly5lwoQJJUEEICQkhFtuuYU1a9aQnZ0NgL+/Pzt37mTfvn3lvpanpydubm6sXLmSU6dO1Un9IlI3FEZEpNYcO3aMvLw8oqKiznsuOjoam81GSkoKAE8//TSZmZl06NCBLl268Oijj/Lrr7+WtHd3d+f555/nu+++IygoiEGDBvHCCy+QlpZWZ8cjIrVDYURE6oVBgwZx4MABPvzwQzp37sz7779Pjx49eP/990vaTJs2jb179xIXF4eHhwePP/440dHRbN261Y6Vi8ilUhgRkVrTokULvLy8SEhIOO+5PXv24OTkRHh4eMm2gIAAbr/9dj7//HNSUlKIjY3lqaeeKrNf+/btefjhh1m6dCk7duygsLCQl19+ubYPRURqkcKIiNQaZ2dnrrrqKubPn19m+G16ejqzZ8/msssuw9fXF4ATJ06U2bdJkyZERERQUFAAQF5eHvn5+WXatG/fHh8fn5I2IuKYNLRXRGrEhx9+yPfff3/e9qeeeoply5Zx2WWX8ec//xkXFxfeeecdCgoKeOGFF0raderUiSFDhtCzZ08CAgLYtGkTX3/9Nffddx8Ae/fuZejQodx444106tQJFxcX5s6dS3p6OhMnTqyz4xSRmqehvSJySc4N7a1ISkoKx44dY/r06axduxabzUbfvn3517/+Rf/+/Uva/etf/2LBggXs3buXgoICWrduza233sqjjz6Kq6srJ06c4Mknn2T58uWkpKTg4uJCx44defjhh7nhhhvq4lBFpJYojIiIiIhdqc+IiIiI2JXCiIiIiNiVwoiIiIjYlcKIiIiI2JXCiIiIiNjVJYWR5557DovFwrRp0ypsM2vWLCwWS5mHh4fHpbytiIiINCDVnvRs48aNvPPOO8TGxl60ra+vb5npoC0WS5Xey2azcfToUXx8fKq8r4iIiNiHYRicPn2a0NBQnJwqvv5RrTCSk5PDpEmTeO+99/jnP/950fYWi4Xg4ODqvBUAR48eLbN+hYiIiDiOlJQUwsLCKny+WmFk6tSpjBkzhmHDhlUqjOTk5NC6dWtsNhs9evTg2WefJSYmpsL2BQUFZdaaODcvW0pKSsk6FiIiIlK/ZWdnEx4ejo+PzwXbVTmMzJkzhy1btrBx48ZKtY+KiuLDDz8kNjaWrKwsXnrpJQYMGMDOnTsrTElxcXHMmDHjvO2+vr4KIyIiIg7mYl0sqjQdfEpKCr169WLZsmUlfUWGDBlCt27d+M9//lOp1ygqKiI6Opqbb76ZZ555ptw2v78yci5ZZWVlKYyIiIg4iOzsbPz8/C76/V2lKyObN28mIyODHj16lGyzWq2sXr2a119/nYKCApydnS/4Gq6urnTv3p39+/dX2Mbd3R13d/eqlCYiIiIOqkphZOjQoWzfvr3Mtttvv52OHTvy2GOPXTSIgBletm/fzujRo6tWqYiIiDRIVQojPj4+dO7cucw2b29vmjVrVrJ98uTJtGzZkri4OACefvpp+vXrR0REBJmZmbz44oskJSVx11131dAhiIhIQ2cYBsXFxVitVnuXIr/h7OyMi4vLJU+7Ue15RiqSnJxcZizxqVOnuPvuu0lLS6Np06b07NmTdevW0alTp5p+axERaYAKCwtJTU0lLy/P3qVIOby8vAgJCcHNza3ar1GlDqz2UtkOMCIi0rDYbDb27duHs7MzLVq0wM3NTZNf1hOGYVBYWMixY8ewWq1ERkaeN7FZrXRgFRERqUuFhYXYbDbCw8Px8vKydznyO56enri6upKUlERhYWG1l3vRQnkiIlLvXWgqcbGvmjg3OrsiIiJiVwojIiIiYlcKIyIiIrVgyJAhTJs2zd5lOASFEREREbGrRh1GPv05iQfmbOVo5hl7lyIiItJoNeow8sXGFObHH2VL8il7lyIiIpVkGAZ5hcV2eVR3aq5Tp04xefJkmjZtipeXF6NGjWLfvn0lzyclJTF27FiaNm2Kt7c3MTExLF68uGTfSZMm0aJFCzw9PYmMjGTmzJk18mdZXzTqeUa6t/Jn+5EstiZncnVsqL3LERGRSjhTZKXTE0vs8t67nh6Bl1vVvzqnTJnCvn37WLBgAb6+vjz22GOMHj2aXbt24erqytSpUyksLGT16tV4e3uza9cumjRpAsDjjz/Orl27+O6772jevDn79+/nzJmGdUW/0YeRj9cnEZ+Sae9SRESkgToXQtauXcuAAQMA+OyzzwgPD2fevHnccMMNJCcnc91119GlSxcA2rVrV7J/cnIy3bt3p1evXgC0adOmzo+htjXqMNItvCkA249kUVhsw82lUd+1EhFxCJ6uzux6eoTd3ruqdu/ejYuLC3379i3Z1qxZM6Kioti9ezcAf/nLX7j33ntZunQpw4YN47rrriM2NhaAe++9l+uuu44tW7Zw1VVXMWHChJJQ01A06m/fNs288PdypbDYxu7UbHuXIyIilWCxWPByc7HLo7bWxbnrrrs4ePAgt956K9u3b6dXr1689tprAIwaNYqkpCQefPBBjh49ytChQ3nkkUdqpQ57adRhxGKx0D3cH4Ct6sQqIiK1IDo6muLiYn755ZeSbSdOnCAhIaHMCvbh4eHcc889fPPNNzz88MO89957Jc+1aNGC2267jU8//ZT//Oc/vPvuu3V6DLWtUd+mAfNWzYqEY+o3IiIitSIyMpLx48dz991388477+Dj48Pf/vY3WrZsyfjx4wGYNm0ao0aNokOHDpw6dYoVK1YQHR0NwBNPPEHPnj2JiYmhoKCAhQsXljzXUDTqKyNgdmIF2KowIiIitWTmzJn07NmTq6++mv79+2MYBosXL8bV1RUAq9XK1KlTiY6OZuTIkXTo0IE333wTADc3N6ZPn05sbCyDBg3C2dmZOXPm2PNwapzFqO6g6TqUnZ2Nn58fWVlZ+Pr61uhrZ50pouuMpQBs/scwmjVxr9HXFxGR6svPzycxMZG2bdtWe3l6qV0XOkeV/f5u9FdG/DxdiQg0x3LrVo2IiEjda/RhBKDb2U6sCiMiIiJ1T2GE3/QbSc60ax0iIiKNkcII0P3s5GfbUjKx2ep9FxoREZEGRWEE6BDUBC83Z04XFHPgWI69yxEREWlUFEYAF2cnurT0A3SrRkREpK4pjJzVvZV5q2ZrimZiFRERqUsKI2epE6uIiIh9KIycdW6Nmr3pp8kpKLZvMSIiIo2IwshZgb4etPT3xGbAr4cz7V2OiIg0cm3atOE///lPpdpaLBbmzZtXq/XUJoWR3+imWzUiIiJ1TmHkN87dqlEYERERqTsKI79xrhNrfEomDrB+oIhI42QYUJhrn0clvxveffddQkNDsdlsZbaPHz+eO+64gwMHDjB+/HiCgoJo0qQJvXv35ocffqixP6Lt27dz5ZVX4unpSbNmzfjjH/9ITk7pPForV66kT58+eHt74+/vz8CBA0lKSgJg27ZtXHHFFfj4+ODr60vPnj3ZtGlTjdVWHpdafXUHExPqh6uzheM5BRw+dYbwAC97lyQiIr9XlAfPhtrnvf9+FNy8L9rshhtu4P7772fFihUMHToUgJMnT/L999+zePFicnJyGD16NP/6179wd3fn448/ZuzYsSQkJNCqVatLKjE3N5cRI0bQv39/Nm7cSEZGBnfddRf33Xcfs2bNori4mAkTJnD33Xfz+eefU1hYyIYNG7BYLABMmjSJ7t2789Zbb+Hs7Ex8fDyurq6XVNPFKIz8hoerM51CfNl2OIutKZkKIyIiUi1NmzZl1KhRzJ49uySMfP311zRv3pwrrrgCJycnunbtWtL+mWeeYe7cuSxYsID77rvvkt579uzZ5Ofn8/HHH+PtbQan119/nbFjx/L888/j6upKVlYWV199Ne3btwcgOjq6ZP/k5GQeffRROnbsCEBkZOQl1VMZCiO/071VUzOMJJ9iXFc7JW8REamYq5d5hcJe711JkyZN4u677+bNN9/E3d2dzz77jIkTJ+Lk5EROTg5PPfUUixYtIjU1leLiYs6cOUNycvIll7h79266du1aEkQABg4ciM1mIyEhgUGDBjFlyhRGjBjB8OHDGTZsGDfeeCMhISEAPPTQQ9x111188sknDBs2jBtuuKEktNQW9Rn5nW5nO7HGp2TatQ4REamAxWLeKrHH4+ytjMoYO3YshmGwaNEiUlJS+Omnn5g0aRIAjzzyCHPnzuXZZ5/lp59+Ij4+ni5dulBYWFhbf2plzJw5k/Xr1zNgwAC++OILOnTowM8//wzAU089xc6dOxkzZgw//vgjnTp1Yu7cubVaj8LI75zrxLrzSDYFxVb7FiMiIg7Lw8ODa6+9ls8++4zPP/+cqKgoevToAcDatWuZMmUK11xzDV26dCE4OJhDhw7VyPtGR0ezbds2cnNzS7atXbsWJycnoqKiSrZ1796d6dOns27dOjp37szs2bNLnuvQoQMPPvggS5cu5dprr2XmzJk1UltFFEZ+p1WAFwHebhRabew6mm3vckRExIFNmjSJRYsW8eGHH5ZcFQGzH8Y333xDfHw827Zt45Zbbjlv5M2lvKeHhwe33XYbO3bsYMWKFdx///3ceuutBAUFkZiYyPTp01m/fj1JSUksXbqUffv2ER0dzZkzZ7jvvvtYuXIlSUlJrF27lo0bN5bpU1Ib1GfkdywWC93D/Vm+J4OtyZklC+iJiIhU1ZVXXklAQAAJCQnccsstJdtfeeUV7rjjDgYMGEDz5s157LHHyM6umX8Ae3l5sWTJEh544AF69+6Nl5cX1113Ha+88krJ83v27OGjjz7ixIkThISEMHXqVP70pz9RXFzMiRMnmDx5Munp6TRv3pxrr72WGTNm1EhtFbEYDjChRnZ2Nn5+fmRlZeHr61vr7/fa8n28vGwv47qG8t+bu9f6+4mISPny8/NJTEykbdu2eHh42LscKceFzlFlv791m6Yc566GbE05ZedKREREGj6FkXLEhvthsUDKyTMczymwdzkiItKIffbZZzRp0qTcR0xMjL3LqxHqM1IOXw9XIlo0YV9GDvHJmQzrFGTvkkREpJEaN24cffv2Lfe52p4Zta4ojFSgeyt/9mXksDXllMKIiIjYjY+PDz4+PvYuo1Zd0m2a5557DovFwrRp0y7Y7quvvqJjx454eHjQpUsXFi9efClvWydK+o1oBV8REbtzgLEWjVZNnJtqh5GNGzfyzjvvEBsbe8F269at4+abb+bOO+9k69atTJgwgQkTJrBjx47qvnWdODf52baUTKw2fQhEROzh3G2IvLw8O1ciFTl3bi7lllG1btPk5OQwadIk3nvvPf75z39esO2rr77KyJEjefTRRwFzMaBly5bx+uuv8/bbb1fn7etEZKAP3m7O5BZa2Z+RQ1Rww75EJiJSHzk7O+Pv709GRgZgzpFhqcKU7FJ7DMMgLy+PjIwM/P39cXZ2rvZrVSuMTJ06lTFjxjBs2LCLhpH169fz0EMPldk2YsQI5s2bV+E+BQUFFBSUjmKpqYlgqsLZyUJsmD/rD55ga/IphRERETsJDg4GKAkkUr/4+/uXnKPqqnIYmTNnDlu2bGHjxo2Vap+WlkZQUNkOoEFBQaSlpVW4T1xcXK3P9lYZ3VudCyOZTOzTyt7liIg0ShaLhZCQEAIDAykqKrJ3OfIbrq6ul3RF5JwqhZGUlBQeeOABli1bVqsz4U2fPr3M1ZTs7GzCw8Nr7f0qosnPRETqD2dn5xr54pP6p0phZPPmzWRkZJSsOghgtVpZvXo1r7/+OgUFBef9RQkODiY9Pb3MtvT09Ate0nF3d8fd3b0qpdWKbuH+AOzLyOF0fhE+Hg1jPLeIiEh9UqXRNEOHDmX79u3Ex8eXPHr16sWkSZOIj48vN7H279+f5cuXl9m2bNky+vfvf2mV14EWPu6ENfXEMODXw1n2LkdERKRBqtKVER8fHzp37lxmm7e3N82aNSvZPnnyZFq2bElcXBwADzzwAIMHD+bll19mzJgxzJkzh02bNvHuu+/W0CHUru6tmnL41Bm2Jp9iYERze5cjIiLS4NT42jTJycmkpqaW/DxgwABmz57Nu+++S9euXfn666+ZN2/eeaGmvjp3q0aTn4mIiNQOi+EA09pVdgni2rAl+RTXvrmOZt5ubPrHMI1vFxERqaTKfn9r1d6LiAn1xc3ZiRO5haScPGPvckRERBochZGLcHdxplOomeY0xFdERKTmKYxUgvqNiIiI1B6FkUo4t2je1pRMu9YhIiLSECmMVEKPszOx7jqaRX6R1c7ViIiINCwKI5UQ1tST5k3cKLIa7Dxa94v2iYiINGQKI5VgsVhK+o3E61aNiIhIjVIYqaSSRfOSNaJGRESkJimMVFJ3jagRERGpFQojldQlzA+LBY5kniHjdL69yxEREWkwFEYqycfDlQ6BPgDE6+qIiIhIjVEYqQLNNyIiIlLzFEaqoCSMqBOriIhIjVEYqYJu4eaIml8PZ2G11fvFjkVERByCwkgVRAQ2oYm7C3mFVvamn7Z3OSIiIg2CwkgVODtZ6BruB2iIr4iISE1RGKmi7uGa/ExERKQmKYxUkaaFFxERqVkKI1XU7eyImn0ZOWSdKbJvMSIiIg2AwkgVNW/iTqsALwB+PZxp32JEREQaAIWRaiidbyTTrnWIiIg0BAoj1aB+IyIiIjVHYaQaurcqHVFjGJr8TERE5FIojFRDpxBf3FycOJVXRNKJPHuXIyIi4tAURqrBzcWJmFBfALamaL4RERGRS6EwUk3nJj+LVydWERGRS6IwUk0lI2rUiVVEROSSKIxU07kwsutoNvlFVvsWIyIi4sAURqqppb8nzZu4U2wz2HEky97liIiIOCyFkWqyWCwlV0c034iIiEj1KYxcAs3EKiIicukURi7BuRE1W5M1vFdERKS6FEYuQWyYH04WOJqVT3p2vr3LERERcUgKI5fA292FDkE+gG7ViIiIVJfCyCUqWadGM7GKiIhUi8LIJep+dgVfXRkRERGpHoWRS3RuRM32w1kUW232LUZERMQBKYxcovYtmuDj7sKZIisJ6aftXY6IiIjDURi5RE5OFrppvhEREZFqUxipAd3Ub0RERKTaFEZqQOm08BpRIyIiUlUKIzWg29mZWA8cyyUrr8jO1YiIiDiWKoWRt956i9jYWHx9ffH19aV///589913FbafNWsWFoulzMPDw+OSi65vArzdaNPMC4D4w5n2LUZERMTBVCmMhIWF8dxzz7F582Y2bdrElVdeyfjx49m5c2eF+/j6+pKamlrySEpKuuSia4y1CI4l1MhLlfYb0a0aERGRqnCpSuOxY8eW+flf//oXb731Fj///DMxMTHl7mOxWAgODq5SUQUFBRQUFJT8nJ2dXaX9K8Vmg/lTYc8imDgb2g2+pJfr3qop8+KPEp+SWTP1iYiINBLV7jNitVqZM2cOubm59O/fv8J2OTk5tG7dmvDw8IteRTknLi4OPz+/kkd4eHh1y6xYcT6cToXCHPjsetg575JervtvhvcahnHp9YmIiDQSVQ4j27dvp0mTJri7u3PPPfcwd+5cOnXqVG7bqKgoPvzwQ+bPn8+nn36KzWZjwIABHD58+ILvMX36dLKyskoeKSkpVS3z4ty8YNLX0Gk8WAvhqymw8YNqv1zHYF/cXJzIOlNE4vHcmqtTRESkgbMYVfxnfGFhIcnJyWRlZfH111/z/vvvs2rVqgoDyW8VFRURHR3NzTffzDPPPFPp98zOzsbPz4+srCx8fX2rUu7F2ayw6GHYPNP8ecjfYfBfwWKp8ktd99Y6Nied4uUbunJdz7CarVNERMTBVPb7u8pXRtzc3IiIiKBnz57ExcXRtWtXXn311Urt6+rqSvfu3dm/f39V37b2ODnD1f+GwY+ZP698FhY/avYpqaJzi+ap34iIiEjlXfI8IzabrUxn0wuxWq1s376dkJCQS33bmmWxwBV/h1EvAhbY+B78704oLqzSy3RvZc43slWTn4mIiFRalUbTTJ8+nVGjRtGqVStOnz7N7NmzWblyJUuWLAFg8uTJtGzZkri4OACefvpp+vXrR0REBJmZmbz44oskJSVx11131fyR1IS+fwSvAJh7D+z8Bs6cgps+AXefSu1+bo2a3amnOVNoxdPNuRaLFRERaRiqFEYyMjKYPHkyqamp+Pn5ERsby5IlSxg+fDgAycnJODmVXmw5deoUd999N2lpaTRt2pSePXuybt26SvUvsZsu15uBZM4f4OAK+GgcTPoKvJtfdNdQPw8CfdzJOF3AjqNZ9G4TUAcFi4iIOLYqd2C1h1rtwFqRI5vh0+vhzEloFgm3fgP+rS66258+2cSSnen8fXRH/jiofR0UKiIiUj/VWgfWRqNlT7hjCfiFw4l98MEIyNh90d1K+o1oBV8REZFKURi5kBYdzEDSIhpOH4UPR0LyLxfcpXRa+Mzar09ERKQBUBi5GL+WcPtiCOsD+Znw8XjYu7TC5rFhfjhZIC07n9SsM3VXp4iIiINSGKkMrwCYPB8ir4LiM/D5RNg2p/ymbi50DDbvi8Xr6oiIiMhFKYxUlpuXuaBe7EQwrDD3T7Du9XKblqxTo8nPRERELkphpCqcXWHCW9D/PvPnpf8Hy56E3w1IKu03osnPRERELkZhpKqcnOCqf8KwGebPa/8DC+4Da3FJk3MjarYfyaLIWvVp5UVERBoThZHqsFjgsmkw7nWwOMHWT+HLW6HI7LDarrk3vh4u5BfZSEg7bd9aRURE6jmFkUvR41a46TNw8YCExfDJtXAmEycnC111q0ZERKRSFEYuVcfR8IdvwN0PktfBrDFwOk2Tn4mIiFSSwkhNaDPQnIukSRCk74APrmJA00zAHFHjADPui4iI2I3CSE0J7gx3LoWAdpCZRJ8fbyHW+RCJx3OZ8e0urDYFEhERkfIojNSkpm3M6eODY3HKO8bXHv+iv9NOZq07xH2zt5BfZLV3hSIiIvWOwkhNaxIIUxZBm8txs+bymfvzTHX9lu93HGXyBxvIzCu0d4UiIiL1isJIbfDwhUlfQ+frcTKKedT5cz7zeIGDhxK5/u31HMnUmjUiIiLnKIzUFlcPuO59GPtfcPFkAL+yxGM6wcfXc+2ba9mdmm3vCkVEROoFhZHaZLFAz9vgjyugRTTNyORjt+e4Le8jbnn7J9btP27vCkVEROxOYaQuBEabgaTXHThh8GeXBXxgPMHfZy5ifvwRe1cnIiJiVwojdcXVE67+N9zwEYa7Lz2c9rPA5W98/+U7vLv6gOYiERGRRkthpK7FTMByzxqMlr3xteTxltureC99lGcXbMWmuUhERKQRUhixh6atsdzxHVz2IAYWJrks57rNk3l21jeai0RERBodhRF7cXaFYU9hufUb8t2b09EphYeT7mHW6zPIytVcJCIi0ngojNhb+yvxuH89p0Iux9NSyD1Zr7L139eQmp5u78pERETqhMJIfdAkkKZ3LyC9798pxpkhxWuwvXUZifGr7F2ZiIhIrVMYqS+cnAga9Rgnb/qWVEsgLckgbO41HFrwLNhs9q5ORESk1iiM1DOB0QPxun896z0ux9Vipc2W58l4eyzkHLN3aSIiIrVCYaQe8gtoTveH5vFZ4EPkG64EZqwh77/94MAKe5cmIiJS4xRG6ikPNxcm3vMEH3SaSYItDK/C4xifXIPxw9NgLbJ3eSIiIjVGYaQec3ay8Ocbr2bNFV/wWfFQLBhY1ryM7cNRkJls7/JERERqhMJIPWexWLjzis40uf417i9+gGzDC6cjGzHeugx2zbd3eSIiIpdMYcRBjO/WkolT/sINvMBWWwSWgiz4cjJ88QdI/Am0to2IiDgoi+EAK7RlZ2fj5+dHVlYWvr6+9i7HrnYdzebOD9dxa/5n/NllQekTLaKhz10QexO4+9ivQBERkbMq+/2tMOKADp/KY8rMjTgd282dbsu4zmUdLtY880k3H+h2M/S+C1pE2bdQERFp1BRGGrjMvEKmzt7C2v0n8CGPlyJ3clXut1hO7i9t1HYQ9PkjdBgFzi72K1ZERBolhZFGoNhq48WlCbyz6iAA/dv68/bAHPy2fwR7vwPj7MytvmHQawr0mAJNWtitXhERaVwURhqR77an8shX28gttBLs68Gbf+hBD9/TsGkmbPkI8k6YDZ1cIWaCebUkrDdYLHatW0REGjaFkUZmf8Zp/vTJZg4cy8XV2cKTY2OY1LcVluIC2DUPNrwHRzaV7hAcC33uhs7Xg5uX3eoWEZGGS2GkEcopKOaRL7fx/c40AG7oGcYzEzrj4epsNji6FTa8Dzu+huJ8c5uHP3T/A/S6A5q1t0/hIiLSICmMNFKGYfD2qoO8uGQPNgM6t/TlrUk9CQ/4zdWPvJOw9RPY+AFkJpVujxhuXi2JGAZOznVfvIiINCgKI43c2v3Huf/zrZzMLcTfy5X/TuzOoA6/67xqs8L+H2DDu+Z/z/FvDb3vhO63gldA3RYuIiINhsKIcCTzDPd+uplfD2dhscAjV0Vx7+D2ODmV03H1xAHY9KF5xSQ/y9zm4gHR46DHrdD6MnDShL0iIlJ5lf3+rtK3y1tvvUVsbCy+vr74+vrSv39/vvvuuwvu89VXX9GxY0c8PDzo0qULixcvrspbyiVo6e/Jl3/qz8Te4RgGvLgkgXs+3czp/HJW/W3WHkb8Cx7aA+Neg+AuZr+S7V/CR2Phte6w+kXIPlr3ByIiIg1ala6MfPvttzg7OxMZGYlhGHz00Ue8+OKLbN26lZiYmPPar1u3jkGDBhEXF8fVV1/N7Nmzef7559myZQudO3eudJG6MnLp5mxI5on5Oym02mjX3Jt3bu1JZNAFpo03DDiyBbZ+DNv/B4Wnze0WJ7NPSfdbocNIcHGrmwMQERGHU2e3aQICAnjxxRe58847z3vupptuIjc3l4ULF5Zs69evH926dePtt9+u9HsojNSM+JRM/vzpZo5m5ePl5syL13dlTGzIxXcszDVXCN7yCSSvK93u1Ry6ToQekzX1vIiInKdWbtP8ltVqZc6cOeTm5tK/f/9y26xfv55hw4aV2TZixAjWr19/wdcuKCggOzu7zEMuXbdwf769/zIGtG9GXqGVqbO38Ozi3RRbbRfe0c0but0Cd3wH922GgdOgSRDkHYf1r8MbfeD94bDlYyjIqZNjERGRhqPKYWT79u00adIEd3d37rnnHubOnUunTp3KbZuWlkZQUFCZbUFBQaSlpV3wPeLi4vDz8yt5hIeHV7VMqUCzJu58fEcf/jS4HQDvrj7IrR9s4HhOQeVeoHkEDJ8BD+6EiZ9D1GiwOMPhDbDgfnipA8yfCsm/mLd6RERELqLKYSQqKor4+Hh++eUX7r33Xm677TZ27dpVo0VNnz6drKyskkdKSkqNvn5j5+LsxPRR0bw1qQfebs6sP3iCsa+tYWvyqcq/iLMrdBwNN38OD+2CYU9BQHsoyoWtn8KHV8EbfWHtfyHnWK0di4iIOL4qhxE3NzciIiLo2bMncXFxdO3alVdffbXctsHBwaSnp5fZlp6eTnBw8AXfw93dvWTEzrmH1LxRXUKYf99A2rfwJjUrn5ve+ZnPfkmiyt2IfILhsgfh/s1w+3fQ9RZw9YLjCbDscXilI8yZBHuXgLW4dg5GREQc1iVPHGGz2SgoKP8Sf//+/Vm+fHmZbcuWLauwj4nUvYhAH+ZNHcjImGAKrTb+b+4OHvvfr+QXWav+YhYLtB4A17wFDyfA1f+Blj3BVgx7FsLsG+E/nWH503DyYI0fi4iIOKYqjaaZPn06o0aNolWrVpw+fbpkqO6SJUsYPnw4kydPpmXLlsTFxQHm0N7Bgwfz3HPPMWbMGObMmcOzzz6rob310O+nke/S0o+3/tCDsKY1sIhe+i5zMrVtc+DMydLtrS+DLtdDp/Ga6VVEpAGqlaG9d955J8uXLyc1NRU/Pz9iY2N57LHHGD58OABDhgyhTZs2zJo1q2Sfr776in/84x8cOnSIyMhIXnjhBUaPHl0rByOX7vfTyP/f6Giu7RGGc3mztlZVcQEkLDaHCB/4ETj7V8/JBdoPNYNJ1Chwv8D8JyIi4jA0HbxU22+nkQfoENSEx0Z25MqOgVgsNRBKADJTzNWDt/8P0reXbnfxhA4jzGASMRxcPWrm/UREpM4pjMglKSi28vG6JF5fsZ+sM+b08b3bNOVvozrSs3UN31I5lgA7/gfbv4aTB0q3u/tC9FjofC20HQLOLjX7viIiUqsURqRGZJ0p4u1VB5i5NpH8InNytOGdgvjriKgLTydfHYYBqfFmKNk5F7KPlD7n1RxiJkDn6yG8rxbtExFxAAojUqPSsvJ5dflevtx0GKvNwMkC1/cMY9qwDoT6e9b8G9pskPKzGUx2zYO8E6XP+YZB52vMYBLS1RzFIyIi9Y7CiNSK/Rk5vLQkge93mrPourk4cfuANtw7pD3+XrW0aJ61CA6uMvuY7F5YumgfQLMIM5R0uR6aR9bO+4uISLUojEit2pJ8iue/28MvieZQXV8PF+4dEsHtA9vg4epce29cdAb2LTODyd4lUJxf+lxwFzOYdL4O/LWEgIiIvSmMSK0zDIOVe4/x/Hd72JNmXq0I9vVg2rBIru8ZhotzLffryM82hwpv/xoOrjAnVzsnvB/E3ghdbgAP/Z0REbEHhRGpM1abwfz4I7y8dC9HMs8A0L6FN4+O6MiImKCaGw58IbknYPd8c6hw0lpK5jBx9YYu10HP26Flj9qvQ0RESiiMSJ0rKLby6c/JvP7jPk7lmcOBu7fy528jO9K3XbO6KyT7qDlUeMvHcHxv6faQrmYo6XK9JlYTEakDCiNiN9n5Rby3+iDv/5TImbNr3FwR1YK/juxIdEgdnj/DgKR1sHkm7JoP1kJzu1sTM5D0vB1Cu9VdPSIijYzCiNhdRnY+//1xH3M2pFBsM7BY4JpuLXlweAfCA2pgzZuqyD0B22bD5llwYn/p9tDuZijpfB24N6nbmkREGjiFEak3Eo/n8tLSBBb9mgqAm7MTf+jXmvuujCDAu5aGA1fEMODQmrNXSxaAzbydhJuP2eG15xQIia3bmkREGiiFEal3fj2cyXPf7WHdAXMCsybuLtwxsA13Xt4OP0/Xui8o9zjEf2ZeLTl5sHR7y55nr5ZcC27edV+XiEgDoTAi9ZJhGPy07zjPf7+HnUezAfDxcOHuy9tx+8A2+HjYIZTYbHDoJ/Nqye6FpVdL3H0h9ibzaklw57qvS0TEwSmMSL1msxks2ZnGv3/Yy970HAD8vVy5+/J2TBnQBm93Oy2Kl3MM4j81r5acOlS6Pay3ebUk5hpwq+P+LiIiDkphRByCzWawaHsq//lhLweO5QIQ4O3Gnwa149b+rfFys1MosdkgcZV5tWTPotIJ1Tz8IHYi9LodAqPtU5uIiINQGBGHYrUZfLvtKK8u30ficTOUNG/ixj2D2/OHfq1rd4r5izmdfvZqyUeQmVS6PTgWosdB9FhoEaUF+0REfkdhRBxSsdXG3K1H+O+P+0g5ac7mGujjztQrIripd7h9Q4nNZk47v3km7FkMhrX0uWaRZiiJHmsOF1YwERFRGBHHVmS18b/Nh3ntx/0lU8yH+Hkw9YoIbuwVjptLLa97czG5J8x1cXZ/awaUcxOqAfiGlQaTVv3AyY4BSkTEjhRGpEEoLLbx5aYUXv9xP2nZ5gq9Lf09uf/KCK7rGYZrbS/GVxn52bBvqRlM9i2DotzS57yaQ8cx5u2ctoPApY7nVRERsSOFEWlQ8ouszNmQzBsrD3DsdAEArQK8+MvQSCZ0C639FYIrq+gMHFhhBpOExZCfWfqcux90GGFeMYkYqjlMRKTBUxiRBim/yMqnPyfx9qoDHM8xb420be7NA0MjGds1FGenetRXw1pkzva6+1vYsxBy0kufc/E0A0n0ODOgePrbrUwRkdqiMCINWl5hMZ+sN0PJuRWC27fwZtqwDozpEoJTfQolYHZ+PbwRdi8wH5nJpc85uUDbweYVk45joEmg/eoUEalBCiPSKOQUFPPRukO8u/ogWWfMUBIV5MO0YZGMiAmuf6EEzPVx0rabV0x2fwvHdv/mSQu06g+dxkH3W7V4n4g4NIURaVSy84uYtfYQ7/10kNP55gRlnUJ8efiqDlzZMRBLfR5qe3xfaTA5uqV0u08IDJsBXW4Ap3rSJ0ZEpAoURqRRysor4oM1B/lw7SFyCsxQ0i3cn0euimJgRLP6HUoAMlPM/iW/vF06HX1Ybxj5PIT1tGtpIiJVpTAijdqp3ELeWX2QWesSyS+yAdC3bQCPjoiiV5sAO1dXCcUFsP4NWP1S6VDhrrfAsCfBJ9i+tYmIVJLCiAiQcTqfN1ccYPYvyRRazVAyuEMLHr6qA7Fh/vYtrjKyU2H507BttvmzWxO4/GHo92dw9bBvbSIiF6EwIvIbRzPP8NqP+/lqUwrFNvOv/IiYIB4aHkVUsI+dq6uEw5vhu7/CkU3mz03bwFX/Mkff1PdbTyLSaCmMiJQj6UQur/6wj7nxRzAM83t8bGwo04ZF0q5FPR+5YrPB9q/ghyfhdKq5re1gGPkcBHWyb20iIuVQGBG5gH3pp/n3D3tZvD0NAGcnC9f1aMn9V0YSHuBl5+ouoiAH1vwb1r0G1gKwOEGvO+GKv4OXA/SHEZFGQ2FEpBJ2HMni38v2snxPBgCuzhYm9m7FfVdGEORbz/tknDoESx83J1ED8GwKV/wf9LwdnF3sWpqICCiMiFTJ5qRTvLIsgbX7TwDg7uLE5P6tuWdwe5o1cbdzdReRuBq++xtk7DR/bhENo56DdkPsWpaIiMKISDWsO3Ccl5fuZXPSKQC83Jy5Y2Bb7r68HX5ernau7gKsxbDlI/jxn3DmpLmt49Vw1TMQ0M6+tYlIo6UwIlJNhmGwcu8xXl6awI4j2QD4erjwx0HtmDKwLU3c6/EtkDOnYOXzsOFdMKzg7Ab9p5rDgd0dYNSQiDQoCiMil8gwDJbsTOeVZQnsTc8BIMDbjXsHt+fW/q3xcHW2c4UXkLEHlkyHAz+aPzcJgmFPQexETS0vInVGYUSkhlhtBgt/Pcq/l+3l0Ik8AAJ93HloeAdu7BVePxfjA3NBvr1LzFBy8qC5LbQHjHoBwnvbtzYRaRQURkRqWLHVxjdbjvDq8n0cyTwDQNdwf54ZH1O/Z3MtLjDXuln1IhSeNrfFXAu974RWA3SlRERqjcKISC0pKLby8bokXl2+j5yCYiwWmNg7nEdHdCTA283e5VXsdDr8+DRs/Qw4+7Fv2sZc86brRGja2p7ViUgDpDAiUssysvN5dvFu5sUfBcDfy5VHrori5j6tcK6vt24AUrfBxg9gxzelV0oA2g6CbpMgehy41fOJ30TEISiMiNSRXw6e4MkFO9mTZn6xd27py9PjO9OjVVM7V3YRhXmwZyFs/dScq+Tc1RI3H4iZAN3/AOF9tfaNiFSbwohIHSq22vjk5yReWbqX0wXFANzQM4zHRnWkeX2fNA0gMxm2zYH4z8yZXc8JaAfdboGuN4NfmN3KExHHVNnv7yr1XIuLi6N37974+PgQGBjIhAkTSEhIuOA+s2bNwmKxlHl4eNTzabZFqsjF2YnbB7blx0eGcH1P80v7q82HufKllXy07hDFVpudK7wI/1Yw+K/wl3iYshi6/QFcvc1ROD/+E/7dGT6eANu/hqIz9q5WRBqYKl0ZGTlyJBMnTqR3794UFxfz97//nR07drBr1y68vb3L3WfWrFk88MADZUKLxWIhKCio0kXqyog4ms1JJ3li/k52HjUnTYsO8eWZ8TH0auNAC9kV5Jjr3mz9DJLWlG5394PO15r9S8J66TaOiFSoTm7THDt2jMDAQFatWsWgQYPKbTNr1iymTZtGZmZmdd9GYUQcktVmMPuXJF5ckkB2vnnr5toeLfnbqI4E+jjY1cGTibDtc4j/HLKSS7c372DexomdCL4h9qtPROqlWrlN83tZWVkABARc+F97OTk5tG7dmvDwcMaPH8/OnTsv2L6goIDs7OwyDxFH4+xk4db+bVjxyBAm9g7HYoFvthxh6Eur+GBNYv2/dfNbAW3hir/DA9tg8gIzfLh4wvG98MNT8O9O8On15gidonx7VysiDqbaV0ZsNhvjxo0jMzOTNWvWVNhu/fr17Nu3j9jYWLKysnjppZdYvXo1O3fuJCys/A5xTz31FDNmzDhvu66MiCOLT8nkifk7+PWwGeKjgnyYMT6Gfu2a2bmyasrPhl3zIH42JK8v3e7hb85b0ueP0Ky9vaoTkXqg1m/T3HvvvXz33XesWbOmwlBRnqKiIqKjo7n55pt55plnym1TUFBAQUFByc/Z2dmEh4crjIjDs9oMvtyUwgvf7+FUXhEA47qG8n9jognydbBbN7914oAZSrZ9DtlHzm60QORV0PdP0P5K9S0RaYRqNYzcd999zJ8/n9WrV9O2bdsqF3fDDTfg4uLC559/Xqn26jMiDc2p3EJeWprA7A3JGAZ4uznzwLBIbh/YFldnB56e3WaFAyvMVYP3LSnd3ryDGUpiJ4J7E/vVJyJ1qlbCiGEY3H///cydO5eVK1cSGRlZ5cKsVisxMTGMHj2aV155pVL7KIxIQ7X9cBaPz99BfEomABGBTZgxLoaBEc3tW1hNOHHADCVbPyud6dXdD3rcCn3uNqeiF5EGrVbCyJ///Gdmz57N/PnziYqKKtnu5+eHp6cnAJMnT6Zly5bExcUB8PTTT9OvXz8iIiLIzMzkxRdfZN68eWzevJlOnTrV6MGIOCKbzeDrLYd5/rs9nMgtBGBMlxD+b0w0of6edq6uBuRnm7dwNrxTunowFogaDf3ugTaX6xaOSANVK2HEUsEvjJkzZzJlyhQAhgwZQps2bZg1axYADz74IN988w1paWk0bdqUnj178s9//pPu3bvX+MGIOLKsvCJeWZbAJz8nYTPA09WZ+4dGcOdlbXF3cbZ3eZfOZoP9y8wVhA/8WLo9MObsLZwbwbUBhC8RKaHp4EUc1K6j2Ty5YAcbD50CoG1zb54c24khUYF2rqwGHUuAX94xO7wW5ZnbPJtCzynQ+y5NPS/SQCiMiDgwwzCYF3+EZxfv4dhpc2TZ8E5BPHF1J8IDGtCKumdOmQv1bXjXXB8HwOIM0WOh7z3Qqp9u4Yg4MIURkQbgdH4Rr/6wj5nrDmG1Gbi7OHHvkPbcM7g9Hq4N4NbNOTYrJHxn3sI59FPp9pCuZijpfB24OMCCgyJShsKISAOyN/00T87fyfqDJwAID/DkiatjGBYdWGFfLoeVvtMMJb9+CcVnZ3P1bgE9b4ded2jaeREHojAi0sAYhsGi7an8c+Fu0rLNL+khUS14cmwMbZuXv1ClQ8s7CZtnwcb3SydSc3KBmGvM+UraXq6rJSL1nMKISAOVW1DM6yv28/5PBymyGrg5O3H3oLZMvSICLzcXe5dX86zFsOdbs8Prb6edd/OByGHQ8WqIGAae/nYrUUTKpzAi0sAdPJbDU9/uYvXeYwCE+nnwj6s7MapzcMO7dXPO0XjY8hHsWQw5aaXbnVzM+Uo6joGoURqNI1JPKIyINAKGYbB0VzpPf7uLI5lnABgY0YwZ42KICPSxc3W1yGaDo1thz0JIWAzH9pR9PqSbecWk42gI7KQROSJ2ojAi0ojkF1l5a+UB3lp1gMJiGy5OFu64rC1/GRpJE/cGeOvm904cgD2LzEfKL8Bvfq01bQNRY8xgEt4PnBvBn4dIPaEwItIIJZ/I4+mFu/hhdzoAgT7u/H10NOO7hTbcWze/l5MBe783b+Uc+BGspSuA4xlg3saJGm2uJOzWgOZsEamHFEZEGrEVezJ46tudJJ0wZzft0yaAGeNjiA5pZJ+fwlwzkOxZZAaUM6dKn3PxhPZXmMEkahR4N4DFCUXqGYURkUYuv8jKB2sSee3HfeQX2XB2snBrv9Y8OLwDfp6u9i6v7lmLzdE4CYvNvibnZnwFsDhBeN+zHWBHQ7P29qtTpAFRGBERAI5knuFfi3axeLs5+qSZtxuPjerI9T3CcHJqJLdufs8wzMnV9iyChEWQuq3s803bmrdx2l9pzmfi4WefOkUcnMKIiJTx075jPLVgJweO5QLQs3VTnhnfmU6h+kyRmWJOR79nISStBVtx6XMWZwjrXRpOQrurE6xIJSmMiMh5CottzFybyKvL95FXaMXJArcNaMODwzvg69EIb92Up+A0HFpj9jU58COc2F/2eQ8/aDu4NJw0bW2fOkUcgMKIiFQoNesM/1y4m0XbUwFo4ePO/zW2UTeVdSoJDq4wg8nBlZCfVfb5gPZlb+m4N+D5XUSqSGFERC5q9d5jPLlgJ4nHzVs3/doF8Mz4zkQG6Qu1XDarOdnauasmKRvAsJY+7+QCYX0g4mw4CekGTg1odWWRKlIYEZFKKSi28t7qg7z2434Kzk6YduflbfnLlZF4N4YJ0y5FflbZWzonD5Z93rMptBtiBpN2V4B/uF3KFLEXhRERqZKUk3nM+LZ0wrQQPw+euLoTIxvyWjc17WRiaTBJXA0F2WWfb97BDCXtr4DWA8FDv8+kYVMYEZFqWb47nScX7OTwKXOtm0EdWjBjXAxtm3vbuTIHYy2GI5tLw8mRTWDYSp93coGWvcxg0m4ItOwJzupELA2LwoiIVFt+kZU3V+zn7VUHKbTacHN24p7B7fjzFRF4uKoPRLWcyYTEVWYn2AMr4FRi2efdfKDNZaXhpHkHLfAnDk9hREQuWeLxXJ6Yv4Of9h0HIDzAk6fGxjA0OsjOlTUApw6ZweTgSji4Cs6cLPu8T+jZ/iZXmEOJffRnLo5HYUREaoRhGHy/I42nF+4iNSsfgGHRQTw5thPhAVporkbYbJD2qzmE+OBKSFpfdoE/gMCY0nDSegC46baZ1H8KIyJSo3ILivnvj/v44KdEim0GHq5O3HdFBHcPaoe7i27d1KiiM5D8c2k4Sf0V+M2vaidXcy2dc+EkpJtmhZV6SWFERGrFvvTTPD5/Bz8fNG8rtGvuzYzxMVwe2cLOlTVguSfO9jdZAQdWQlZy2efd/cwJ19oNMa+atOio+U2kXlAYEZFaYxgGC7Yd5ZmFuzmeY95OGNMlhH9cHU2In6edq2vgDMOcz+TgSjOcJK4+f1ZYVy8I6QqhPaBlD3M9nYB26hArdU5hRERqXXZ+Ea8s3cvH6w9hM8DLzZlpwyK5fWBbXJ2d7F1e42CzwtH40ls6R7dCYc757Tz8zVAS2v1sQOkBvqEKKFKrFEZEpM7sPJrF4/N2sCU5E4DIwCY8NS6GgRHN7VtYY2Szmov7HdkCR7eY/03bfn6HWIAmQb+5enL2Cop3s7qvWRoshRERqVM2m8HXWw7z3Hd7OJlbCMDImGD+b0y0Rt3YW3EhZOwqDSdH482ff7uuzjn+rX4XULpp8T+pNoUREbGLrLwi/v3DXj75OQmrzcDdxYk/DW7PvYPb4+mmTpX1RmGeecWkJKBsMa+onMdiTsB2LpyE94agzpotVipFYURE7Coh7TRPLdjJ+oMnAAj18+D/xnRidBetdVNvncmE1Piz4WSr+chKOb+dq5c5fX14X/MR1gu8Auq6WnEACiMiYnfnJkz756LdHMk017rp1y6Ap8bF0DFYn2WHkJNhhpIjW8z1dQ5vPH/0DkDzKGjVtzSgNItQ51hRGBGR+uNMoZV3Vh/grZUHKCi24WSBW/u15sHhHfD3crN3eVIVNhsc3wspv5Q+yru94xkA4X1Kw0lod3BT36HGRmFEROqdw6fyeHbxbhZvTwOgqZcrj4yIYmLvVjg76V/RDiv3OKRsOBtONpj9T4rzy7ZxcoHgWGjVrzSk+Ibap16pMwojIlJvrdt/nKe+3cnedHM+jE4hvswYH0PvNup30CAUF5pr7Zy7cpL8C+Sknd/OL7z0ykl4n7MdYzWtfUOiMCIi9Vqx1canPyfxyrK9ZOcXAzC+WyjTR0UT7Odh5+qkRhkGZCb/5urJL5C+Awxb2Xau3mYoaT3AfLTsCa6a0deRKYyIiEM4kVPAS0sTmLMxBePsLK5Tr4jgzsva4uGqocANVsFpOLLZDCjJP5sdYwuyy7ZxcjUDSev+0GqA2UHWw88+9Uq1KIyIiEPZfjiLJxeUzuLaupkXj4/pxNDoQA0FbgxsNnMituT1kLQWktaff2vH4gRBMdB6ILTqb149aRJon3qlUhRGRMThGIbB/PijPLt4NxmnzenLB3dowRNjO9G+RRM7Vyd16tyCgMnrzWCStBZOJZ7frlmEGUpanb21499KQ4rrEYUREXFYOQXFvLFiP+//dJAiq4GLk4U7LmvL/VdG4OOhmT8brexUSF5nhpPk9ZC+E/jdV5hvy9KrJq0HmPOfOGnRRntRGBERh5d4PJd/LtzF8j0ZADRv4s5jI6O4rkcYThoKLGdOmSN1ktaa4eToVrAVl23jGXA2nPSHkG7gF2YGFhfNb1MXFEZEpMFYsSeDpxfuIvF4LgAxob48MiKKIR1aqD+JlCrMhcObSvudpGyE4jPlNLSYKxb7hVXwCAevZrrdUwMURkSkQSkstjFzbSKv/bifnALzX7992gTw15FR9NL8JFIeaxGkbivtEHt8L2QdBmvBxfd18TCvoJwLJ78PLL4tNaNsJdRKGImLi+Obb75hz549eHp6MmDAAJ5//nmioqIuuN9XX33F448/zqFDh4iMjOT5559n9OjRNX4wItLwncwt5M0V+/n45yQKi815Kq7sGMgjV0XRKVS/H+QiDAPyTpgLAGYd/s0jBbKOmP9f3gRt5fFqVjasNO8AwV0gsBO4q8M11FIYGTlyJBMnTqR3794UFxfz97//nR07drBr1y68vb3L3WfdunUMGjSIuLg4rr76ambPns3zzz/Pli1b6Ny5c40ejIg0HqlZZ/jv8n18uekwVpv5a2xc11AeGt6BNs3L/30kUinFBZB9tDSoZB/+XXA5DIU5F3gBCzRrbwaToM7mNPjBXcAnuNHd+qmT2zTHjh0jMDCQVatWMWjQoHLb3HTTTeTm5rJw4cKSbf369aNbt268/fbblXofhRERqcjBYzm8smwvC39NBcDZycJNvcP5y5WRmslVaodhQH5m6ZWUrBRzhtmMXZC2o+IrK17NzFAS3MUMKEGdoXkkODfcEWKV/f6+pEUAsrLMZaQDAiq+X7t+/XoeeuihMttGjBjBvHnzKtynoKCAgoLSe3rZ2dkVthWRxq1diya8fksP7hmcxUtLE1iZcIzZvyTzv82HmTKgDfcMbk9Tb42ckBpksYBnU/MRXM4V/pwMSNtuTnmftt18HN9r3h46uNJ8nOPsDoHR5uucu4ISFNPoZpqtdhix2WxMmzaNgQMHXvB2S1paGkFBQWW2BQUFkZZW8T25uLg4ZsyYUd3SRKQR6tzSj1m392FD4kle+H4Pm5JO8c7qg8z+JZm7B7Xjzsva4u2uRdikDjQJhIih5uOcojOQsbs0nKTvMK+iFJ6G1Hjz8Vv+rUuvoAR3hhYdwdXLnIXWydn8b5n/d/7dz451O6jan8ypU6eyY8cO1qxZU5P1ADB9+vQyV1Oys7MJDw+v8fcRkYanT9sAvrqnPysSMnhxyV52p2bzyrK9fLTuEFOviGBSv1a4u2jNG6ljrp7Qsof5OMdmg8xDZij5bUjJSoHMJPOxZ2GFL3lhlrJB5bcBpiS0/DbAWODGTyC0Ww0cbNVVK4zcd999LFy4kNWrVxMWFnbBtsHBwaSnp5fZlp6eTnBwcIX7uLu74+7uXp3SRESwWCxc2TGIIR0CWbg9lVeWJnDoRB5PL9zFB2sSeWBYJNd2b4mLs2bmFDtycoKAduaj07jS7XknS6+cnAspJ/aDtfDsSseV6eppnD8B3MVUtX0NqlIHVsMwuP/++5k7dy4rV64kMjLyovvcdNNN5OXl8e2335ZsGzBgALGxserAKiJ1oshq46tNh3l1+V7Ss83+aO1bePPIVVGM7BysidPEsRiGGUpsVvO/hvU3/2/7zXPW37W7yHMtOtb4kORaGU3z5z//mdmzZzN//vwyc4v4+fnh6ekJwOTJk2nZsiVxcXGAObR38ODBPPfcc4wZM4Y5c+bw7LPPamiviNS5/CIrH68/xJsrD5CZVwRAbJgfj46I4rKI5golIjWsVsJIRR/UmTNnMmXKFACGDBlCmzZtmDVrVsnzX331Ff/4xz9KJj174YUXNOmZiNhNdn4R768+yPtrEskrtALQv10zHh0ZRY9WTe1cnUjDoengRUQu4nhOAW+s2M9nPydTaDVncx3eKYhpwyKJCW1cQytFaoPCiIhIJR0+lcd/l+/j682HOTuZK8Oig/jL0Ahiw/ztWpuII1MYERGpov0ZObz24z6+3Xa0JJRcEdWC+4dG6vaNSDUojIiIVNOBYzm8sWI/8+OPlqx7c3lkcx4YGqkVgkWqQGFEROQSHTqey5sr9/PNliMUnw0lA9o34y9DI+nXrpmdqxOp/xRGRERqSMrJPN5ceYCvN6dQZDV/ZfZpG8ADQyMZ0L6ZhgSLVEBhRESkhh3JPMPbKw/wxcaUktE3PVs35S9DIxkUqXlKRH5PYUREpJakZeXz9qoDfL4hmYJiM5R0DffngaERXBEVqFAicpbCiIhILcvIzufd1Qf59Jck8ovMUNKlpR9/GRrJsGiFEhGFERGROnI8p4D3fjrIJ+uTSmZ0jQ7x5YGhEVzVKRgnJ4USaZwURkRE6tjJ3EI+WHOQj9YlkVNgroAaFeTD/UMjGNU5BGeFEmlkFEZEROwkM6+QD9ceYubaRE7nm6EkIrAJ918ZwdWxoQol0mgojIiI2FnWmSJmrT3EB2sOkn02lLRr7s39QyMYGxuKi7OTnSsUqV0KIyIi9cTp/CI+Xp/Eez8dJDOvCFAokcZBYUREpJ7JLSjm4/VJvLv6AKcUSqQRUBgREamncgqK+Xj9Id5bfVChRBo0hRERkXpOoUQaOoUREREHoVAiDZXCiIiIg1EokYZGYURExEEplEhDoTAiIuLgFErE0SmMiIg0EAol4qgURkREGhiFEnE0CiMiIg2UQok4CoUREZEGrrxQ0rqZF3df3o7re4bh4eps5wqlsVMYERFpJMoLJc2buHP7wDb8oV9r/Dxd7VyhNFYKIyIijUxeYTFfbEzhvdUHOZqVD0ATdxcm9W3FHZe1JcjXw84VSmOjMCIi0kgVWW0siD/KO6sPsDc9BwA3Zyeu7dGSPw5qR7sWTexcoTQWCiMiIo2czWawIiGDt1YeYFPSKQAsFhgZE8w9g9vTNdzfvgVKg6cwIiIiJTYeOsnbKw+wfE9GybYB7Ztx75D2XBbRHIvFYsfqpKFSGBERkfMkpJ3mnVUHmL/tKFab+es/JtSXe4e0Z1TnEJydFEqk5iiMiIhIhQ6fyuP9nxL5YmMKZ4qsgDks+I+D2nFdDw0LlpqhMCIiIhd1MreQj9Yd4qP1h8j8zbDgOy4zhwX7emhYsFSfwoiIiFRaXmExczak8P5PvxsW3K8Vdw5sS6CGBUs1KIyIiEiVVTQs+LqeLfnjoPa0be5t5wrFkSiMiIhItdlsBj/uyeDtVWWHBQ+PDuLOy9rSp22ARuDIRSmMiIhIjShvWHDnlr7ceVlbxnQJxc1FC/NJ+RRGRESkRu1LP82Haw/xzZbDFBTbAAj0cWdy/9bc0rc1Ad5udq5Q6huFERERqRUncwv5fEMyH607RMbpAgDcXZy4tkcYd17WhohAHztXKPWFwoiIiNSqwmIbi7Yf5YM1iew4kl2yfXCHFtx5WVsuj9TMro2dwoiIiNQJwzDYkHiSD9Yksmx3Oue+VToENeGOgW2Z0L2lJlFrpBRGRESkziWdyGXWukN8uTGF3EJzZtcAbzf+0LcVf+jfmkAfzVfSmFT2+7vKXaBXr17N2LFjCQ0NxWKxMG/evAu2X7lyJRaL5bxHWlpaVd9aRETqudbNvHlybAzr/z6Uf4yJpqW/JydzC/nvj/sZ+NyPPPRlPDuPZtm7TKlnqhxGcnNz6dq1K2+88UaV9ktISCA1NbXkERgYWNW3FhERB+Hr4cpdl7dj1aNDeHNSD3q2bkqR1eCbLUcY8981THx3Pct2pWOz1fuL81IHXKq6w6hRoxg1alSV3ygwMBB/f/8q7yciIo7LxdmJ0V1CGN0lhPiUTD5Yk8ji7an8fPAkPx88SZtmXtw+sC3X9wzD273KX0nSQNTZTDXdunUjJCSE4cOHs3bt2gu2LSgoIDs7u8xDREQcW7dwf167uTs//fUK7hncHl8PFw6dyOPJBTvpH7ecZxfvJvF4rr3LFDuo9TASEhLC22+/zf/+9z/+97//ER4ezpAhQ9iyZUuF+8TFxeHn51fyCA8Pr+0yRUSkjoT6e/K3UR35+e9DeWZ8DG2be5OdX8y7qw9yxUsruemd9czbeoT8Iqu9S5U6ckmjaSwWC3PnzmXChAlV2m/w4MG0atWKTz75pNznCwoKKCgoKPk5Ozub8PBwjaYREWmAbDaDFQkZfPZLMisTMjjXjcTP05Vrurfkpt7hRIfod78jquxoGrvcoOvTpw9r1qyp8Hl3d3fc3d3rsCIREbEXJycLQ6ODGBodxNHMM3y16TBfbkrhSOYZZq07xKx1h+ga7s/NvcO5umsoTdS3pMGxyxmNj48nJCTEHm8tIiL1WKi/Jw8Mi+S+KyNYs/84X2xMZunOdLalZLItJZOnF+5iXNdQbuodTrdwf83w2kBUOYzk5OSwf//+kp8TExOJj48nICCAVq1aMX36dI4cOcLHH38MwH/+8x/atm1LTEwM+fn5vP/++/z4448sXbq05o5CREQaFGcnC4M7tGBwhxYczyngmy2HmbMhhYPHc5mzMYU5G1PoGOzDTb3DuaZ7S/y9tEifI6tyn5GVK1dyxRVXnLf9tttuY9asWUyZMoVDhw6xcuVKAF544QXeffddjhw5gpeXF7GxsTzxxBPlvkZFNAOriIgYhsHGQ6eYsyGZRdtTS1YOdnNxYlTnYCb2bkW/dgG6WlKPaDp4ERFpsLLOFDE//gifb0hhd2rp9A9tmnlxU+9WXNezpaaerwcURkREpMEzDIPtR7KYszGFBfFHySkoBsDFycLQ6EAm9m7FoA4tcHbS1RJ7UBgREZFGJbegmEW/pjJnYzJbkjNLtof4eXBDr3Bu7BVGWFMv+xXYCCmMiIhIo5WQdpovNqbwzdbDZOYVAWCxwOWRLZjYO5xh0UG4udTZJOSNlsKIiIg0evlFVpbuSmfOhmTWHThRsr2ZtxvX9jAnVIsI9LFjhQ2bwoiIiMhvJJ3I5ctNKXy16TAZp0tn+e7Vuik39Q5nTGwIXm6aUK0mKYyIiIiUo9hqY2XCMeZsTGFFQgbWs/PP+7i7MK5bKBN7t6JzS18NEa4BCiMiIiIXkZ6dz9ebD/PFxhSST+aVbO8U4svEPuGM79oSPy9XO1bo2BRGREREKslmM/j54AnmbEzh+x1pFFrNCdXcXZwY3SWEib3D6dNWE6pVlcKIiIhINZzKLWRe/BHmbEghIf10yfa2zb25qXc41/UIo4WPFnOtDIURERGRS2AYBtsOZ/HFxmQWxB8lt9AKaEK1qlAYERERqSEXnFCtZxg39AonPEATqv2ewoiIiEgtqGhCtcsimnNDr3Cu6hSEh6uznausHxRGREREalFBsZWlO9P5YmMKa/YfL9nu6+HChO4tubFXODGhjXuIsMKIiIhIHUk5mcdXmw/z9aYUjmbll2yPDvHlxl5hTOjWkqbebnas0D4URkREROqY1Waw7sBxvtx0mCU70ygsNocIuzk7MbxTEDf2DueyiOaNptOrwoiIiIgdZeYVsmDbUb7clMKOI9kl20P8PLi+ZxjX9wyjdTNvO1ZY+xRGRERE6omdR7P4atNh5sUfKen0CtCvXQA39gpnVOcQPN0aXqdXhREREZF6pqDYyg+7MvhiUwo/7TvGuW9gH3cXru4ayo29wugW7t9gOr0qjIiIiNRjRzPP8L/Nh/lq8+Ey6+JEBjbhxl7hXNOjJc2bOPZMrwojIiIiDsBmM/gl8SRfbUph8Y5U8ovMTq8uThau7BjITb3DGdyhBS7OTnautOoURkRERBxMdn4RC7el8uWmFOJTMku2t/BxZ1zXUMZ1DSU2zM9hbuMojIiIiDiwvemn+WpTCt9sOcKJ3MKS7W2aeZnBpFsoEYE+dqzw4hRGREREGoDCYhur9x5jwbajLNuVzpkia8lznUJ8Gd8tlLFdQwn197RjleVTGBEREWlgcguK+WF3Ogvij7Jq7zGKbaVf4X3aBDC2WyhjuoQQUE9me1UYERERacBO5Rby3Y405scfYcOhkyXDhF2cLFwW2Zzx3UIZ3imYJu4udqtRYURERKSRSM06w8JtqSzYdpTtR7JKtnu4OjE0OojxXUMZHNUCd5e6nVhNYURERKQROngshwXbjrIg/igHj+eWbPf1cGFk52DGd2tJv3bN6mR9HIURERGRRswwDHYezWZ+/BG+3ZZKWnbpasItfNy5OjaEcV1Da3XGV4URERERAcyJ1TYcOsn8+KN8tyO1zPo4rQLMocI39Q4nPMCrRt9XYURERETOU1hs46d95lDhpTtLhwp/fEcfBnVoUaPvVdnvb/t1sRUREZE65+ZidmodGh1EXmExP+zO4Mfd6Qxo38xuNSmMiIiINFJebi4l08zbk+OtuiMiIiINisKIiIiI2JXCiIiIiNiVwoiIiIjYlcKIiIiI2JXCiIiIiNiVwoiIiIjYlcKIiIiI2JXCiIiIiNiVwoiIiIjYVZXDyOrVqxk7diyhoaFYLBbmzZt30X1WrlxJjx49cHd3JyIiglmzZlWjVBEREWmIqhxGcnNz6dq1K2+88Ual2icmJjJmzBiuuOIK4uPjmTZtGnfddRdLliypcrEiIiLS8FR5obxRo0YxatSoSrd/++23adu2LS+//DIA0dHRrFmzhn//+9+MGDGi3H0KCgooKCgo+Tk7O7uqZYqIiIiDqPVVe9evX8+wYcPKbBsxYgTTpk2rcJ+4uDhmzJhx3naFEhEREcdx7nvbMIwLtqv1MJKWlkZQUFCZbUFBQWRnZ3PmzBk8PT3P22f69Ok89NBDJT8fOXKETp06ER4eXtvlioiISA07ffo0fn5+FT5f62GkOtzd3XF3dy/5uUmTJqSkpODj44PFYqmx98nOziY8PJyUlBR8fX1r7HXrq8Z0vDrWhqsxHa+OteFqLMdrGAanT58mNDT0gu1qPYwEBweTnp5eZlt6ejq+vr7lXhUpj5OTE2FhYbVRHgC+vr4N+i/D7zWm49WxNlyN6Xh1rA1XYzjeC10ROafW5xnp378/y5cvL7Nt2bJl9O/fv7bfWkRERBxAlcNITk4O8fHxxMfHA+bQ3fj4eJKTkwGzv8fkyZNL2t9zzz0cPHiQv/71r+zZs4c333yTL7/8kgcffLBmjkBEREQcWpXDyKZNm+jevTvdu3cH4KGHHqJ79+488cQTAKSmppYEE4C2bduyaNEili1bRteuXXn55Zd5//33KxzWW5fc3d158skny/RPacga0/HqWBuuxnS8OtaGq7Ed78VYjIuNtxERERGpRVqbRkREROxKYURERETsSmFERERE7EphREREROxKYURERETsqsGHkTfeeIM2bdrg4eFB37592bBhwwXbf/XVV3Ts2BEPDw+6dOnC4sWL66jSSxMXF0fv3r3x8fEhMDCQCRMmkJCQcMF9Zs2ahcViKfPw8PCoo4qr76mnnjqv7o4dO15wH0c9r23atDnvWC0WC1OnTi23vaOd09WrVzN27FhCQ0OxWCzMmzevzPOGYfDEE08QEhKCp6cnw4YNY9++fRd93ap+7uvChY61qKiIxx57jC5duuDt7U1oaCiTJ0/m6NGjF3zN6nwW6sLFzuuUKVPOq3vkyJEXfd36eF7h4sdb3mfYYrHw4osvVvia9fXc1pYGHUa++OILHnroIZ588km2bNlC165dGTFiBBkZGeW2X7duHTfffDN33nknW7duZcKECUyYMIEdO3bUceVVt2rVKqZOncrPP//MsmXLKCoq4qqrriI3N/eC+/n6+pKamlrySEpKqqOKL01MTEyZutesWVNhW0c+rxs3bixznMuWLQPghhtuqHAfRzqnubm5dO3alTfeeKPc51944QX++9//8vbbb/PLL7/g7e3NiBEjyM/Pr/A1q/q5rysXOta8vDy2bNnC448/zpYtW/jmm29ISEhg3LhxF33dqnwW6srFzivAyJEjy9T9+eefX/A16+t5hYsf72+PMzU1lQ8//BCLxcJ11113wdetj+e21hgNWJ8+fYypU6eW/Gy1Wo3Q0FAjLi6u3PY33nijMWbMmDLb+vbta/zpT3+q1TprQ0ZGhgEYq1atqrDNzJkzDT8/v7orqoY8+eSTRteuXSvdviGd1wceeMBo3769YbPZyn3eUc+pYRgGYMydO7fkZ5vNZgQHBxsvvvhiybbMzEzD3d3d+Pzzzyt8nap+7u3h98dang0bNhiAkZSUVGGbqn4W7KG8Y73tttuM8ePHV+l1HOG8Gkblzu348eONK6+88oJtHOHc1qQGe2WksLCQzZs3M2zYsJJtTk5ODBs2jPXr15e7z/r168u0BxgxYkSF7euzrKwsAAICAi7YLicnh9atWxMeHs748ePZuXNnXZR3yfbt20doaCjt2rVj0qRJZWb9/b2Gcl4LCwv59NNPueOOOy64erWjntPfS0xMJC0trcy58/Pzo2/fvhWeu+p87uurrKwsLBYL/v7+F2xXlc9CfbJy5UoCAwOJiori3nvv5cSJExW2bUjnNT09nUWLFnHnnXdetK2jntvqaLBh5Pjx41itVoKCgspsDwoKIi0trdx90tLSqtS+vrLZbEybNo2BAwfSuXPnCttFRUXx4YcfMn/+fD799FNsNhsDBgzg8OHDdVht1fXt25dZs2bx/fff89Zbb5GYmMjll1/O6dOny23fUM7rvHnzyMzMZMqUKRW2cdRzWp5z56cq5646n/v6KD8/n8cee4ybb775giu6VvWzUF+MHDmSjz/+mOXLl/P888+zatUqRo0ahdVqLbd9QzmvAB999BE+Pj5ce+21F2znqOe2ulzsXYDUvKlTp7Jjx46L3l/s379/mdWTBwwYQHR0NO+88w7PPPNMbZdZbaNGjSr5/9jYWPr27Uvr1q358ssvK/WvDUf1wQcfMGrUKEJDQyts46jnVEoVFRVx4403YhgGb7311gXbOupnYeLEiSX/36VLF2JjY2nfvj0rV65k6NChdqys9n344YdMmjTpoh3LHfXcVleDvTLSvHlznJ2dSU9PL7M9PT2d4ODgcvcJDg6uUvv66L777mPhwoWsWLGCsLCwKu3r6upK9+7d2b9/fy1VVzv8/f3p0KFDhXU3hPOalJTEDz/8wF133VWl/Rz1nAIl56cq5646n/v65FwQSUpKYtmyZRe8KlKei30W6qt27drRvHnzCut29PN6zk8//URCQkKVP8fguOe2shpsGHFzc6Nnz54sX768ZJvNZmP58uVl/uX4W/379y/THmDZsmUVtq9PDMPgvvvuY+7cufz444+0bdu2yq9htVrZvn07ISEhtVBh7cnJyeHAgQMV1u3I5/WcmTNnEhgYyJgxY6q0n6OeUzBX/A4ODi5z7rKzs/nll18qPHfV+dzXF+eCyL59+/jhhx9o1qxZlV/jYp+F+urw4cOcOHGiwrod+bz+1gcffEDPnj3p2rVrlfd11HNbafbuQVub5syZY7i7uxuzZs0ydu3aZfzxj380/P39jbS0NMMwDOPWW281/va3v5W0X7t2reHi4mK89NJLxu7du40nn3zScHV1NbZv326vQ6i0e++91/Dz8zNWrlxppKamljzy8vJK2vz+eGfMmGEsWbLEOHDggLF582Zj4sSJhoeHh7Fz5057HEKlPfzww8bKlSuNxMREY+3atcawYcOM5s2bGxkZGYZhNKzzahjmqIFWrVoZjz322HnPOfo5PX36tLF161Zj69atBmC88sorxtatW0tGkDz33HOGv7+/MX/+fOPXX381xo8fb7Rt29Y4c+ZMyWtceeWVxmuvvVby88U+9/ZyoWMtLCw0xo0bZ4SFhRnx8fFlPsMFBQUlr/H7Y73YZ8FeLnSsp0+fNh555BFj/fr1RmJiovHDDz8YPXr0MCIjI438/PyS13CU82oYF/97bBiGkZWVZXh5eRlvvfVWua/hKOe2tjToMGIYhvHaa68ZrVq1Mtzc3Iw+ffoYP//8c8lzgwcPNm677bYy7b/88kujQ4cOhpubmxETE2MsWrSojiuuHqDcx8yZM0va/P54p02bVvJnExQUZIwePdrYsmVL3RdfRTfddJMREhJiuLm5GS1btjRuuukmY//+/SXPN6TzahiGsWTJEgMwEhISznvO0c/pihUryv17e+6YbDab8fjjjxtBQUGGu7u7MXTo0PP+HFq3bm08+eSTZbZd6HNvLxc61sTExAo/wytWrCh5jd8f68U+C/ZyoWPNy8szrrrqKqNFixaGq6ur0bp1a+Puu+8+L1Q4ynk1jIv/PTYMw3jnnXcMT09PIzMzs9zXcJRzW1sshmEYtXrpRUREROQCGmyfEREREXEMCiMiIiJiVwojIiIiYlcKIyIiImJXCiMiIiJiVwojIiIiYlcKIyIiImJXCiMiIiJiVwojIiIiYlcKIyIiImJXCiMiIiJiV/8PDJ8pgP8Z8QAAAAAASUVORK5CYII=\n"
},
"metadata": {}
}
],
"source": [
"pd.DataFrame(history.history).plot()\n",
"plt.title(\"Loss\")\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "138d6368",
"metadata": {
"id": "138d6368",
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "9b93e877-e123-40d1-cf72-c19e9ba617e0"
},
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"### Result on the Training Set ###\n",
"FRENCH (SOURCE) ENGLISH (TARGET) AUTOMATIC TRANSLATION IN ENGLISH\n",
"\n",
"nous en savons assez we know enough we re\n",
"garde ton sang froid stay calm keep calm\n",
"je ne pleurerai pas i won t cry i didn t go\n",
"je ne suis pas contente i m not happy i m not busy\n",
"moi je veux ça i want that i ll try\n",
"j étais tellement heureuse i was so happy i m too busy\n",
"j aime le printemps i like spring i like cookies\n",
"c est mon garçon that s my boy it s my dog\n",
"mille mercis many thanks thanks a\n",
"quelle horreur how horrible how nothing\n",
"soyez satisfaites be content be content\n",
"toi décide you decide you promised\n",
"je m en suis remis i recovered i recovered\n",
"ce sont les affaires it s business it is good\n",
"je dois m en aller i need to go i must to go\n",
"sommes nous prêtes are we ready are we kidding\n",
"arrêtez de crier stop shouting stop grumbling\n",
"je lis souvent i often read i m ashamed\n",
"les plantes croissent plants grow plants stinks\n",
"il m a fallu le faire i had to do it i had to it\n",
"nous éclatâmes de rire we broke up we lost\n",
"\n",
"\n",
"### Result on the Test Set ###\n",
"FRENCH (SOURCE) ENGLISH (TARGET) AUTOMATIC TRANSLATION IN ENGLISH\n",
"\n",
"ils ont abandonné they gave up they lost\n",
"rappelle moi call me back help me\n",
"je veux essayer i want to try i want to you\n",
"ça fonctionne bien it works well it was hard\n",
"grimpe dans la camionnette get in the van get on the bus\n",
"je suis mince i m thin i m innocent\n",
"elle semble riche she seems rich she sued well\n",
"ça me gave this annoys me i m wrong\n",
"c était long it was long how thrilling\n",
"c était un mensonge it was a lie it was a lie\n",
"conduis toi en homme act like a man get to sleep\n",
"laissez moi m en occuper leave it to me let me alone\n",
"puis je manger ceci may i eat this can i go it\n",
"devine make a guess let s go\n",
"je ne suis pas jolie i m not pretty i m not fat\n",
"demande à quiconque ask anyone stop clichés\n",
"venez nous rejoindre come join us are us\n",
"vous ennuyez vous are you bored you you you\n",
"je ne viendrai pas i won t come i can t go\n",
"c est un voleur he is a thief it s a joke\n",
"bien joué well done good job\n"
]
}
],
"source": [
"def word_for_id(integer, tokenizer):\n",
" # map an integer to a word\n",
" for word, index in tokenizer.word_index.items():\n",
" if index == integer:\n",
" return word\n",
" return None\n",
"\n",
"def predict_seq(model, tokenizer, source):\n",
" # generate target from a source sequence\n",
" prediction = model.predict(source, verbose=0)[0]\n",
" integers = [np.argmax(vector) for vector in prediction]\n",
" target = list()\n",
" for i in integers:\n",
" word = word_for_id(i, tokenizer)\n",
" if word is None:\n",
" break\n",
" target.append(word)\n",
" return ' '.join(target)\n",
"\n",
"def compare_prediction(model, tokenizer, sources, raw_dataset, limit=20):\n",
" # evaluate a model\n",
" actual, predicted = [], []\n",
" src = f'{source_str.upper()} (SOURCE)'\n",
" tgt = f'{target_str.upper()} (TARGET)'\n",
" pred = f'AUTOMATIC TRANSLATION IN {target_str.upper()}'\n",
" print(f'{src:30} {tgt:25} {pred}\\n')\n",
"\n",
" for i, source in enumerate(sources): # translate encoded source text\n",
" source = source.reshape((1, source.shape[0]))\n",
" translation = predict_seq(model, tokenizer, source)\n",
" raw_target, raw_src = raw_dataset[i]\n",
" print(f'{raw_src:30} {raw_target:25} {translation}')\n",
" if i >= limit: # Display some of the result\n",
" break\n",
"\n",
"# test on some training sequences\n",
"print('### Result on the Training Set ###')\n",
"compare_prediction(model, tar_tokenizer, trainX, train)\n",
"\n",
"# test on some test sequences\n",
"print('\\n\\n### Result on the Test Set ###')\n",
"compare_prediction(model, tar_tokenizer, testX, test)"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "2e935484",
"metadata": {
"id": "2e935484"
},
"outputs": [],
"source": [
"# It takes long to compute the BLEU Score\n",
"\n",
"def bleu_score(model, tokenizer, sources, raw_dataset):\n",
" # Get the bleu score of a model\n",
" actual, predicted = [], []\n",
" for i, source in enumerate(sources):\n",
" # translate encoded source text\n",
" source = source.reshape((1, source.shape[0]))\n",
" translation = predict_seq(model, tar_tokenizer, source)\n",
" raw_target, raw_src = raw_dataset[i]\n",
" actual.append([raw_target.split()])\n",
" predicted.append(translation.split())\n",
"\n",
" bleu_dic = {}\n",
" bleu_dic['1-grams'] = corpus_bleu(actual, predicted, weights=(1.0, 0, 0, 0))\n",
" bleu_dic['1-2-grams'] = corpus_bleu(actual, predicted, weights=(0.5, 0.5, 0, 0))\n",
" bleu_dic['1-3-grams'] = corpus_bleu(actual, predicted, weights=(0.3, 0.3, 0.3, 0))\n",
" bleu_dic['1-4-grams'] = corpus_bleu(actual, predicted, weights=(0.25, 0.25, 0.25, 0.25))\n",
"\n",
" return bleu_dic\n",
"\n",
"# Compute the BLEU Score\n",
"bleu_train = bleu_score(model, tar_tokenizer, trainX, train)\n",
"bleu_test = bleu_score(model, tar_tokenizer, testX, test)"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "d955dd33",
"metadata": {
"id": "d955dd33",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 452
},
"outputId": "abcb44b3-1ea2-407b-c09b-a4e31a918949"
},
"outputs": [
{
"output_type": "display_data",
"data": {
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
],
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGzCAYAAAD9pBdvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAyG0lEQVR4nO3deVhV1cLH8R+gHAYDxAFETZTMeQrDEa0biealvNXNtFK5pdXVJm63tEwzSyyHsLJ81evwZA5lZYOKGenN0jfLobduaZhjKih6BYUEhfX+0cPJE4McBJfg9/M853k866y19tp74eHH3muf42GMMQIAALDE0/YAAADA5Y0wAgAArCKMAAAAqwgjAADAKsIIAACwijACAACsIowAAACrCCMAAMAqwggAALCKMAKgXJ599ll5eHi4VTcjI6NCx7B+/Xp5eHho+fLlFdrvxTZs2DCFh4eXq6078wBcqggjuOgWLFggDw8Pl0f9+vV1/fXXa/Xq1UXqe3h4aNSoUaX2ed111xXps/DRsmVLZ73z/VJs27atrrvuuvPuQ15enmbMmKFOnTopICBAQUFBatOmjUaMGKEdO3act311NWnSJK1YsaLC+128eLGSkpIqvN+yOnTokJ599llt377d2hiqO9tzDLtq2B4ALl/PPfecmjZtKmOM0tPTtWDBAt1000366KOP9Oc//9nt/ho1aqTExMQi5YGBgRUxXBe33XabVq9erUGDBmn48OE6c+aMduzYoY8//ljdu3d3CUDV1dixYzV69GiXskmTJun222/XgAEDKnRbixcv1vfff69HH320Qvstq0OHDmnChAkKDw9Xx44dK7z/OXPmqKCgoFxti5uHqsj2HMMuwgis6devnzp37ux8fu+99yokJERLliwpVxgJDAzU3XffXZFDLNbXX3+tjz/+WC+88IKeeuopl9dee+01nThxotLHUOj06dPy9vaWp+fFP8lZo0YN1ajBW0hxcnJy5OfnV+b6NWvWLPe2mAdUB1ymwSUjKChIvr6+l/wb688//yxJ6tGjR5HXvLy8VKdOHZeygwcP6t5771VYWJgcDoeaNm2qBx98UHl5ec46u3fv1l//+lcFBwfLz89PXbt21cqVK136KVwfsXTpUo0dO1YNGzaUn5+fsrKyJElfffWV+vbtq8DAQPn5+al379768ssvS90XY4zq1q2rhIQEZ1lBQYGCgoLk5eXlEqxefPFF1ahRQ6dOnZJUdK2Ch4eHsrOztXDhQuclsmHDhrls78SJExo2bJiCgoIUGBio+Ph45eTklDrG6667TitXrtS+ffuc/f5xfUVBQYFeeOEFNWrUSD4+Prrhhhu0a9euIn2V5xitX79e1157rSQpPj7eOYYFCxY4x9e2bVtt2bJFvXr1kp+fnzOkfvDBB+rfv79z7iMiIjRx4kTl5+e7bOOPa0b27t0rDw8PTZ06VbNnz1ZERIQcDoeuvfZaff311y5ti1szUnhpc8WKFWrbtq0cDofatGmj5OTkYvevc+fO8vHxUUREhP7nf/6nzOtQUlNTddtttyk0NFQ+Pj5q1KiR7rzzTmVmZrrUW7RokSIjI+Xr66vg4GDdeeedOnDggPP1sswxqrdL+10f1VpmZqYyMjJkjNGRI0f06quv6tSpU+U+u5Gfn1/sWhBfX1/5+/tf6HCdmjRpIkl666231KNHj1LD06FDhxQVFaUTJ05oxIgRatmypQ4ePKjly5crJydH3t7eSk9PV/fu3ZWTk6OHH35YderU0cKFC3XzzTdr+fLl+stf/uLS58SJE+Xt7a3HH39cubm58vb21meffaZ+/fopMjJS48ePl6enp+bPn68//elP2rBhg6Kiooodn4eHh3r06KHPP//cWfZ///d/yszMlKenp7788kv1799fkrRhwwZ16tRJtWrVKravN998U/fdd5+ioqI0YsQISVJERIRLnTvuuENNmzZVYmKitm7dqrlz56p+/fp68cUXSzyGTz/9tDIzM/XLL7/o5ZdflqQiY5g8ebI8PT31+OOPKzMzUy+99JLuuusuffXVV8465T1GrVq10nPPPadx48ZpxIgRio6OliR1797dWefYsWPq16+f7rzzTt19990KCQmR9Nv6qFq1aikhIUG1atXSZ599pnHjxikrK0tTpkwpcZ8LLV68WCdPntT9998vDw8PvfTSS7r11lu1e/fu855N+eKLL/Tee+/p73//u6644gq98soruu2227R//35nYN62bZv69u2rBg0aaMKECcrPz9dzzz2nevXqnXdseXl5io2NVW5urh566CGFhobq4MGD+vjjj3XixAnn5dEXXnhBzzzzjO644w7dd999Onr0qF599VX16tVL27ZtU1BQUJnmGNWcAS6y+fPnG0lFHg6HwyxYsKBIfUlm5MiRpfbZu3fvYvuUZO6//35nvfHjxxtJ5ujRo8X206ZNG9O7d+9St1VQUODcXkhIiBk0aJCZOXOm2bdvX5G6Q4YMMZ6enubrr78uth9jjHn00UeNJLNhwwbnaydPnjRNmzY14eHhJj8/3xhjzLp164wk06xZM5OTk+PST/PmzU1sbKyzT2OMycnJMU2bNjU33nhjqfszZcoU4+XlZbKysowxxrzyyiumSZMmJioqyjz55JPGGGPy8/NNUFCQeeyxx5ztCo/lufz9/c3QoUOLbKOw7t/+9jeX8r/85S+mTp06pY7PGGP69+9vmjRpUqS88Ji0atXK5ObmOstnzJhhJJnvvvvOGHPhx+jrr782ksz8+fOLvFb4szBr1qwir507T4Xuv/9+4+fnZ06fPu0sGzp0qMv+7dmzx0gyderUMcePH3eWf/DBB0aS+eijj5xlxc2DJOPt7W127drlLPv222+NJPPqq686y+Li4oyfn585ePCgsyw1NdXUqFGjSJ9/tG3bNiPJvPPOOyXW2bt3r/Hy8jIvvPCCS/l3331natSo4VJe0hzj8sBlGlgzc+ZMrV27VmvXrtWiRYt0/fXX67777tN7771Xrv7Cw8Od/Z37qOgFcR4eHlqzZo2ef/551a5dW0uWLNHIkSPVpEkTDRw40Hlpo6CgQCtWrFBcXJzL2phz+5GkVatWKSoqSj179nS+VqtWLY0YMUJ79+7VDz/84NJu6NCh8vX1dT7fvn27UlNTNXjwYB07dkwZGRnKyMhQdna2brjhBn3++eelLo6Mjo5Wfn6+Nm7cKOm3MyDR0dGKjo7Whg0bJEnff/+9Tpw44TwrUF4PPPBAkW0fO3bMeampvOLj4+Xt7e3Sr/Tb5S/pwo/R+TgcDsXHxxcpP3eeTp48qYyMDEVHRysnJ6dMd10NHDhQtWvXLnG/ShMTE+NyZqp9+/YKCAhwts3Pz9enn36qAQMGKCwszFnvqquuUr9+/c7bf+GZjzVr1pR4qe29995TQUGB7rjjDucxz8jIUGhoqJo3b65169addzu4PHCZBtZERUW5/JIeNGiQOnXqpFGjRunPf/6zyy+XsvD391dMTMwFj6ss18odDoeefvppPf300zp8+LD+/e9/a8aMGXr77bdVs2ZNLVq0SEePHlVWVpbatm1bal/79u1Tly5dipS3atXK+fq5fTRt2tSlXmpqqqTfQkpJMjMzXX6pneuaa66Rn5+fNmzYoNjYWG3YsEETJkxQaGioXn31VZ0+fdoZSs4NTOVx5ZVXujwvHNN///tfBQQEVEq/0oUfo/Np2LBhsT+v//nPfzR27Fh99tlnRQLXH9dVFOd8++VO28L2hW2PHDmiX3/9VVdddVWResWV/VHTpk2VkJCg6dOn66233lJ0dLRuvvlm3X333c6gkpqaKmOMmjdvXmwfF7JwF9ULYQSXDE9PT11//fWaMWOGUlNT1aZNmwrfho+PjyTp119/Lfb1nJwcZ52yatCgge68807ddtttatOmjd5++23n4sbKcO5f25Kcf9FPmTKlxNtOS7v+XrNmTXXp0kWff/65du3apbS0NEVHRyskJERnzpzRV199pQ0bNqhly5ZlWktQGi8vr2LLjTGV2u+FHqPz+eOcSL8t1u3du7cCAgL03HPPKSIiQj4+Ptq6dauefPLJMp2JuZDjVVnH+lzTpk3TsGHD9MEHH+iTTz7Rww8/rMTERP3v//6vGjVqpIKCAnl4eGj16tXFjod1IShEGMEl5ezZs5LkvGOjohUuPt25c6caN27s8lpOTo4OHDigPn36lKvvmjVrqn379kpNTVVGRobq16+vgIAAff/99+cd086dO4uUF57GLxxzSQpPxQcEBJT7zFB0dLRefPFFffrpp6pbt65atmwpDw8PtWnTRhs2bNCGDRvKdLt1ZX0S6IX2e6HHqDzbX79+vY4dO6b33ntPvXr1cpbv2bPH7b4qQ/369eXj41PsXUfFlZWkXbt2ateuncaOHauNGzeqR48emjVrlp5//nlFRETIGKOmTZvq6quvLrUfPkX28saaEVwyzpw5o08++UTe3t7OSxQV7YYbbpC3t7feeOONIn+Zzp49W2fPnj3v9fLU1FTt37+/SPmJEye0adMm1a5dW/Xq1ZOnp6cGDBigjz76SN98802R+oV/od50003avHmzNm3a5HwtOztbs2fPVnh4uFq3bl3qeCIjIxUREaGpU6cWG+KOHj1aanvptzCSm5urpKQk9ezZ0/mLITo6Wm+++aYOHTpUpvUi/v7+lfI5K/7+/mW6rFGSCz1GhXdjubNvhWcCzj0TkZeXp9dff73MfVQmLy8vxcTEaMWKFTp06JCzfNeuXcV+EvIfZWVlOf94KNSuXTt5enoqNzdXknTrrbfKy8tLEyZMKHJGxhijY8eOOZ9f6ByjauPMCKxZvXq186//I0eOaPHixUpNTdXo0aOLrB/45ptv9Pzzzxfp47rrrnOuY8jMzNSiRYuK3Vbh7cL169fXuHHjNHbsWPXq1Us333yz/Pz8tHHjRi1ZskR9+vRRXFxcqeP+9ttvNXjwYPXr10/R0dEKDg7WwYMHtXDhQh06dEhJSUnOX0STJk3SJ598ot69e2vEiBFq1aqVDh8+rHfeeUdffPGFgoKCNHr0aC1ZskT9+vXTww8/rODgYC1cuFB79uzRu+++e94PNPP09NTcuXPVr18/tWnTRvHx8WrYsKEOHjyodevWKSAgQB999FGpfXTr1k01atTQzp07nbflSlKvXr30xhtvSFKZwkhkZKQ+/fRTTZ8+XWFhYWratGmx62HcFRkZqWXLlikhIUHXXnutatWqdd55OteFHqOIiAgFBQVp1qxZuuKKK+Tv768uXboUWb9zru7du6t27doaOnSoHn74YXl4eOjNN9+s0MskF+rZZ5/VJ598oh49eujBBx9Ufn6+XnvtNbVt2/a8H33/2WefadSoUfrrX/+qq6++WmfPntWbb74pLy8v3XbbbZJ+O27PP/+8xowZo71792rAgAG64oortGfPHr3//vsaMWKEHn/8cUkXPseo4izdxYPLWHG39vr4+JiOHTuaN954w+XWS2NMibfsSjITJ040xpR+a29xP+aLFi0yXbt2Nf7+/sbhcJiWLVuaCRMmuNxuWZL09HQzefJk07t3b9OgQQNTo0YNU7t2bfOnP/3JLF++vEj9ffv2mSFDhph69eoZh8NhmjVrZkaOHOlyK+rPP/9sbr/9dhMUFGR8fHxMVFSU+fjjj136KbyNtaRbKbdt22ZuvfVWU6dOHeNwOEyTJk3MHXfcYVJSUs67T8YYc+211xpJ5quvvnKW/fLLL0aSady4cZH6xd1SumPHDtOrVy/j6+trJDlv8y3plurCn4U9e/aUOrZTp06ZwYMHm6CgICPJeQtoScek8NbYP96KeyHH6IMPPjCtW7d23vZa2Hfv3r1NmzZtim3z5Zdfmq5duxpfX18TFhZmnnjiCbNmzRojyaxbt85Zr6Rbe6dMmVKkT0lm/Pjxzucl3dpb3O3wTZo0KXLrdUpKiunUqZPx9vY2ERERZu7cueYf//iH8fHxKfV47N692/ztb38zERERxsfHxwQHB5vrr7/efPrpp0Xqvvvuu6Znz57G39/f+Pv7m5YtW5qRI0eanTt3OuuUNMe4PHgYcwnFdACAdQMGDNB//vMf511IQGVjzQgAXMb+eGdZamqqVq1aVaZvrwYqCmdGAOAy1qBBAw0bNkzNmjXTvn379MYbbyg3N1fbtm0r8fNBgIrGAlYAuIz17dtXS5YsUVpamhwOh7p166ZJkyYRRHBRuX2Z5vPPP1dcXJzCwsLk4eGhFStWnLfN+vXrdc0118jhcOiqq66q1A+EAgCU3fz587V3716dPn1amZmZSk5O1jXXXGN7WLjMuB1GsrOz1aFDB82cObNM9ffs2aP+/fvr+uuv1/bt2/Xoo4/qvvvu05o1a9weLAAAqH4uaM2Ih4eH3n//fQ0YMKDEOk8++aRWrlzp8imUd955p06cOKHk5OTybhoAAFQTlb5mZNOmTUU+fjk2NrbUb1LNzc11foKf9Nv3Shw/flx16tThI4MBAKgijDE6efKkwsLCSv0Ax0oPI2lpaQoJCXEpCwkJUVZWln799ddiv2AqMTFREyZMqOyhAQCAi+DAgQNq1KhRia9fknfTjBkzRgkJCc7nmZmZuvLKK3XgwIEL+ppxAABw8WRlZalx48a64oorSq1X6WEkNDRU6enpLmXp6ekKCAgo9qyIJDkcDjkcjiLlAQEBhBEAAKqY8y2xqPRPYO3WrZtSUlJcytauXatu3bpV9qYBAEAV4HYYOXXqlLZv3+78Rsc9e/Zo+/btzq9UHzNmjIYMGeKs/8ADD2j37t164okntGPHDr3++ut6++239dhjj1XMHgAAgCrN7TDyzTffqFOnTurUqZMkKSEhQZ06ddK4ceMkSYcPH3YGE0lq2rSpVq5cqbVr16pDhw6aNm2a5s6dq9jY2AraBQAAUJVVie+mycrKUmBgoDIzM1kzAgBAFVHW3998ay8AALCKMAIAAKwijAAAAKsIIwAAwCrCCAAAsIowAgAArCKMAAAAqwgjAADAKsIIAACwijACAACsIowAAACrCCMAAMAqwggAALCKMAIAAKwijAAAAKsIIwAAwCrCCAAAsIowAgAArCKMAAAAqwgjAADAKsIIAACwijACAACsIowAAACrCCMAAMAqwggAALCKMAIAAKwijAAAAKsIIwAAwCrCCAAAsIowAgAArCKMAAAAqwgjAADAKsIIAACwijACAACsIowAAACrCCMAAMAqwggAALCKMAIAAKwijAAAAKsIIwAAwCrCCAAAsIowAgAArCKMAAAAqwgjAADAKsIIAACwijACAACsIowAAACrCCMAAMAqwggAALCKMAIAAKwijAAAAKsIIwAAwCrCCAAAsIowAgAArCKMAAAAqwgjAADAKsIIAACwijACAACsIowAAACrCCMAAMAqwggAALCKMAIAAKwijAAAAKvKFUZmzpyp8PBw+fj4qEuXLtq8eXOp9ZOSktSiRQv5+vqqcePGeuyxx3T69OlyDRgAAFQvboeRZcuWKSEhQePHj9fWrVvVoUMHxcbG6siRI8XWX7x4sUaPHq3x48frxx9/1L/+9S8tW7ZMTz311AUPHgAAVH1uh5Hp06dr+PDhio+PV+vWrTVr1iz5+flp3rx5xdbfuHGjevToocGDBys8PFx9+vTRoEGDzns2BQAAXB7cCiN5eXnasmWLYmJifu/A01MxMTHatGlTsW26d++uLVu2OMPH7t27tWrVKt10000lbic3N1dZWVkuDwAAUD3VcKdyRkaG8vPzFRIS4lIeEhKiHTt2FNtm8ODBysjIUM+ePWWM0dmzZ/XAAw+UepkmMTFREyZMcGdoAACgiqr0u2nWr1+vSZMm6fXXX9fWrVv13nvvaeXKlZo4cWKJbcaMGaPMzEzn48CBA5U9TAAAYIlbZ0bq1q0rLy8vpaenu5Snp6crNDS02DbPPPOM7rnnHt13332SpHbt2ik7O1sjRozQ008/LU/PonnI4XDI4XC4MzQAAFBFuXVmxNvbW5GRkUpJSXGWFRQUKCUlRd26dSu2TU5OTpHA4eXlJUkyxrg7XgAAUM24dWZEkhISEjR06FB17txZUVFRSkpKUnZ2tuLj4yVJQ4YMUcOGDZWYmChJiouL0/Tp09WpUyd16dJFu3bt0jPPPKO4uDhnKAEAAJcvt8PIwIEDdfToUY0bN05paWnq2LGjkpOTnYta9+/f73ImZOzYsfLw8NDYsWN18OBB1atXT3FxcXrhhRcqbi8AAECV5WGqwLWSrKwsBQYGKjMzUwEBAbaHAwAAyqCsv7/5bhoAAGAVYQQAAFhFGAEAAFYRRgAAgFWEEQAAYBVhBAAAWEUYAQAAVhFGAACAVYQRAABgFWEEAABYRRgBAABWEUYAAIBVhBEAAGAVYQQAAFhFGAEAAFYRRgAAgFWEEQAAYBVhBAAAWEUYAQAAVhFGAACAVYQRAABgFWEEAABYRRgBAABWEUYAAIBVhBEAAGAVYQQAAFhFGAEAAFYRRgAAgFWEEQAAYBVhBAAAWEUYAQAAVhFGAACAVYQRAABgFWEEAABYRRgBAABWEUYAAIBVhBEAAGAVYQQAAFhFGAEAAFYRRgAAgFWEEQAAYBVhBAAAWEUYAQAAVhFGAACAVYQRAABgFWEEAABYRRgBAABWEUYAAIBVhBEAAGAVYQQAAFhFGAEAAFYRRgAAgFWEEQAAYBVhBAAAWEUYAQAAVhFGAACAVYQRAABgFWEEAABYRRgBAABWEUYAAIBVhBEAAGBVDdsDsC189ErbQ7hs7Z3c3/YQAACXAM6MAAAAq8oVRmbOnKnw8HD5+PioS5cu2rx5c6n1T5w4oZEjR6pBgwZyOBy6+uqrtWrVqnINGAAAVC9uX6ZZtmyZEhISNGvWLHXp0kVJSUmKjY3Vzp07Vb9+/SL18/LydOONN6p+/fpavny5GjZsqH379ikoKKgixg8AAKo4t8PI9OnTNXz4cMXHx0uSZs2apZUrV2revHkaPXp0kfrz5s3T8ePHtXHjRtWsWVOSFB4efmGjBgAA1YZbl2ny8vK0ZcsWxcTE/N6Bp6diYmK0adOmYtt8+OGH6tatm0aOHKmQkBC1bdtWkyZNUn5+fonbyc3NVVZWlssDAABUT26FkYyMDOXn5yskJMSlPCQkRGlpacW22b17t5YvX678/HytWrVKzzzzjKZNm6bnn3++xO0kJiYqMDDQ+WjcuLE7wwQAAFVIpd9NU1BQoPr162v27NmKjIzUwIED9fTTT2vWrFklthkzZowyMzOdjwMHDlT2MAEAgCVurRmpW7euvLy8lJ6e7lKenp6u0NDQYts0aNBANWvWlJeXl7OsVatWSktLU15enry9vYu0cTgccjgc7gwNAABUUW6dGfH29lZkZKRSUlKcZQUFBUpJSVG3bt2KbdOjRw/t2rVLBQUFzrKffvpJDRo0KDaIAACAy4vbl2kSEhI0Z84cLVy4UD/++KMefPBBZWdnO++uGTJkiMaMGeOs/+CDD+r48eN65JFH9NNPP2nlypWaNGmSRo4cWXF7AQAAqiy3b+0dOHCgjh49qnHjxiktLU0dO3ZUcnKyc1Hr/v375en5e8Zp3Lix1qxZo8cee0zt27dXw4YN9cgjj+jJJ5+suL0AAABVlocxxtgexPlkZWUpMDBQmZmZCggIqNC++W4ae/huGgCo3sr6+5vvpgEAAFYRRgAAgFWEEQAAYBVhBAAAWEUYAQAAVhFGAACAVYQRAABgFWEEAABYRRgBAABWEUYAAIBVhBEAAGAVYQQAAFhFGAEAAFYRRgAAgFWEEQAAYBVhBAAAWEUYAQAAVhFGAACAVYQRAABgFWEEAABYRRgBAABWEUYAAIBVhBEAAGAVYQQAAFhFGAEAAFYRRgAAgFWEEQAAYBVhBAAAWEUYAQAAVhFGAACAVTVsDwCoLOGjV9oewmVr7+T+tocAoArhzAgAALCKMAIAAKwijAAAAKsIIwAAwCrCCAAAsIowAgAArCKMAAAAqwgjAADAKsIIAACwijACAACsIowAAACrCCMAAMAqwggAALCKMAIAAKwijAAAAKsIIwAAwCrCCAAAsIowAgAArCKMAAAAqwgjAADAKsIIAACwijACAACsIowAAACrCCMAAMAqwggAALCKMAIAAKwijAAAAKsIIwAAwCrCCAAAsIowAgAArCKMAAAAqwgjAADAqnKFkZkzZyo8PFw+Pj7q0qWLNm/eXKZ2S5culYeHhwYMGFCezQIAgGrI7TCybNkyJSQkaPz48dq6das6dOig2NhYHTlypNR2e/fu1eOPP67o6OhyDxYAAFQ/boeR6dOna/jw4YqPj1fr1q01a9Ys+fn5ad68eSW2yc/P11133aUJEyaoWbNm591Gbm6usrKyXB4AAKB6quFO5by8PG3ZskVjxoxxlnl6eiomJkabNm0qsd1zzz2n+vXr695779WGDRvOu53ExERNmDDBnaEBuIyEj15pewiXrb2T+9seAqoht86MZGRkKD8/XyEhIS7lISEhSktLK7bNF198oX/961+aM2dOmbczZswYZWZmOh8HDhxwZ5gAAKAKcevMiLtOnjype+65R3PmzFHdunXL3M7hcMjhcFTiyAAAwKXCrTBSt25deXl5KT093aU8PT1doaGhRer//PPP2rt3r+Li4pxlBQUFv224Rg3t3LlTERER5Rk3AACoJty6TOPt7a3IyEilpKQ4ywoKCpSSkqJu3boVqd+yZUt999132r59u/Nx88036/rrr9f27dvVuHHjC98DAABQpbl9mSYhIUFDhw5V586dFRUVpaSkJGVnZys+Pl6SNGTIEDVs2FCJiYny8fFR27ZtXdoHBQVJUpFyAABweXI7jAwcOFBHjx7VuHHjlJaWpo4dOyo5Odm5qHX//v3y9OSDXQEAQNmUawHrqFGjNGrUqGJfW79+faltFyxYUJ5NAgCAaopTGAAAwCrCCAAAsIowAgAArCKMAAAAqwgjAADAKsIIAACwijACAACsIowAAACrCCMAAMAqwggAALCKMAIAAKwijAAAAKsIIwAAwCrCCAAAsIowAgAArCKMAAAAqwgjAADAKsIIAACwijACAACsIowAAACrCCMAAMAqwggAALCKMAIAAKwijAAAAKsIIwAAwCrCCAAAsIowAgAArCKMAAAAqwgjAADAKsIIAACwijACAACsIowAAACrCCMAAMAqwggAALCKMAIAAKwijAAAAKsIIwAAwCrCCAAAsIowAgAArCKMAAAAqwgjAADAKsIIAACwijACAACsIowAAACrCCMAAMAqwggAALCKMAIAAKwijAAAAKsIIwAAwCrCCAAAsIowAgAArCKMAAAAqwgjAADAKsIIAACwijACAACsIowAAACrCCMAAMAqwggAALCKMAIAAKwijAAAAKsIIwAAwCrCCAAAsIowAgAArCpXGJk5c6bCw8Pl4+OjLl26aPPmzSXWnTNnjqKjo1W7dm3Vrl1bMTExpdYHAACXF7fDyLJly5SQkKDx48dr69at6tChg2JjY3XkyJFi669fv16DBg3SunXrtGnTJjVu3Fh9+vTRwYMHL3jwAACg6nM7jEyfPl3Dhw9XfHy8WrdurVmzZsnPz0/z5s0rtv5bb72lv//97+rYsaNatmypuXPnqqCgQCkpKSVuIzc3V1lZWS4PAABQPbkVRvLy8rRlyxbFxMT83oGnp2JiYrRp06Yy9ZGTk6MzZ84oODi4xDqJiYkKDAx0Pho3buzOMAEAQBXiVhjJyMhQfn6+QkJCXMpDQkKUlpZWpj6efPJJhYWFuQSaPxozZowyMzOdjwMHDrgzTAAAUIXUuJgbmzx5spYuXar169fLx8enxHoOh0MOh+MijgwAYFv46JW2h3DZ2ju5v9XtuxVG6tatKy8vL6Wnp7uUp6enKzQ0tNS2U6dO1eTJk/Xpp5+qffv27o8UAABUS25dpvH29lZkZKTL4tPCxajdunUrsd1LL72kiRMnKjk5WZ07dy7/aAEAQLXj9mWahIQEDR06VJ07d1ZUVJSSkpKUnZ2t+Ph4SdKQIUPUsGFDJSYmSpJefPFFjRs3TosXL1Z4eLhzbUmtWrVUq1atCtwVAABQFbkdRgYOHKijR49q3LhxSktLU8eOHZWcnOxc1Lp//355ev5+wuWNN95QXl6ebr/9dpd+xo8fr2efffbCRg8AAKq8ci1gHTVqlEaNGlXsa+vXr3d5vnfv3vJsAgAAXCb4bhoAAGAVYQQAAFhFGAEAAFYRRgAAgFWEEQAAYBVhBAAAWEUYAQAAVhFGAACAVYQRAABgFWEEAABYRRgBAABWEUYAAIBVhBEAAGAVYQQAAFhFGAEAAFYRRgAAgFWEEQAAYBVhBAAAWEUYAQAAVhFGAACAVYQRAABgFWEEAABYRRgBAABWEUYAAIBVhBEAAGAVYQQAAFhFGAEAAFYRRgAAgFWEEQAAYBVhBAAAWEUYAQAAVhFGAACAVYQRAABgFWEEAABYRRgBAABWEUYAAIBVhBEAAGAVYQQAAFhFGAEAAFYRRgAAgFWEEQAAYBVhBAAAWEUYAQAAVhFGAACAVYQRAABgFWEEAABYRRgBAABWEUYAAIBVhBEAAGAVYQQAAFhFGAEAAFYRRgAAgFWEEQAAYBVhBAAAWEUYAQAAVhFGAACAVYQRAABgFWEEAABYRRgBAABWEUYAAIBVhBEAAGAVYQQAAFhVrjAyc+ZMhYeHy8fHR126dNHmzZtLrf/OO++oZcuW8vHxUbt27bRq1apyDRYAAFQ/boeRZcuWKSEhQePHj9fWrVvVoUMHxcbG6siRI8XW37hxowYNGqR7771X27Zt04ABAzRgwAB9//33Fzx4AABQ9bkdRqZPn67hw4crPj5erVu31qxZs+Tn56d58+YVW3/GjBnq27ev/vnPf6pVq1aaOHGirrnmGr322msXPHgAAFD11XCncl5enrZs2aIxY8Y4yzw9PRUTE6NNmzYV22bTpk1KSEhwKYuNjdWKFStK3E5ubq5yc3OdzzMzMyVJWVlZ7gy3TApycyq8T5RNZcznuZhbe5jb6qsy55Z5taey5rWwX2NMqfXcCiMZGRnKz89XSEiIS3lISIh27NhRbJu0tLRi66elpZW4ncTERE2YMKFIeePGjd0ZLi5xgUm2R4DKwtxWX8xt9VTZ83ry5EkFBgaW+LpbYeRiGTNmjMvZlIKCAh0/flx16tSRh4eHxZFdWrKystS4cWMdOHBAAQEBtoeDCsK8Vl/MbfXF3BbPGKOTJ08qLCys1HpuhZG6devKy8tL6enpLuXp6ekKDQ0ttk1oaKhb9SXJ4XDI4XC4lAUFBbkz1MtKQEAAP/zVEPNafTG31RdzW1RpZ0QKubWA1dvbW5GRkUpJSXGWFRQUKCUlRd26dSu2Tbdu3VzqS9LatWtLrA8AAC4vbl+mSUhI0NChQ9W5c2dFRUUpKSlJ2dnZio+PlyQNGTJEDRs2VGJioiTpkUceUe/evTVt2jT1799fS5cu1TfffKPZs2dX7J4AAIAqye0wMnDgQB09elTjxo1TWlqaOnbsqOTkZOci1f3798vT8/cTLt27d9fixYs1duxYPfXUU2revLlWrFihtm3bVtxeXKYcDofGjx9f5JIWqjbmtfpibqsv5vbCeJjz3W8DAABQifhuGgAAYBVhBAAAWEUYAQAAVhFGAACAVYQRAABgFWGkgn3++eeKi4tTWFiYPDw8Sv1CQFx63J2/48eP66GHHlKLFi3k6+urK6+8Ug8//LDzyx1x6SjP/837779fERER8vX1Vb169XTLLbeU+D1csOdC3neNMerXrx/v15YRRipYdna2OnTooJkzZ1bqds6cOVOp/V+u3J2/Q4cO6dChQ5o6daq+//57LViwQMnJybr33nsrfGx5eXkV3uflpDz/NyMjIzV//nz9+OOPWrNmjYwx6tOnj/Lz8yt0bMzthbmQ992kpKRK/c4z5raMDCqNJPP++++ft96PP/5oevToYRwOh2nVqpVZu3atS9s9e/YYSWbp0qWmV69exuFwmPnz55uMjAxz5513mrCwMOPr62vatm1rFi9e7NJ37969zahRo8wjjzxigoKCTP369c3s2bPNqVOnzLBhw0ytWrVMRESEWbVqlbPN8ePHzeDBg03dunWNj4+Pueqqq8y8efMq8tBUCWWdvz96++23jbe3tzlz5kyp9WbPnm0aNWpkfH19zYABA8y0adNMYGCg8/Xx48ebDh06mDlz5pjw8HDj4eFhjDFm9erVpkePHiYwMNAEBweb/v37m127djnbFf68LFu2zPTs2dP4+PiYzp07m507d5rNmzebyMhI4+/vb/r27WuOHDnibLdu3Tpz7bXXGj8/PxMYGGi6d+9u9u7d6/b+VwXlndtvv/3WSHI53sVhbu1xZ263bdtmGjZsaA4fPlzmdsxt5SCMVKKy/HCfPXvWtGjRwtx4441m+/btZsOGDSYqKqrYMBIeHm7effdds3v3bnPo0CHzyy+/mClTppht27aZn3/+2bzyyivGy8vLfPXVV87+e/fuba644gozceJE89NPP5mJEycaLy8v069fPzN79mzz008/mQcffNDUqVPHZGdnG2OMGTlypOnYsaP5+uuvzZ49e8zatWvNhx9+WFmH6ZJV3l9Yc+bMMXXr1i21zhdffGE8PT3NlClTzM6dO83MmTNNcHBwkTe1wjefrVu3mm+//dYYY8zy5cvNu+++a1JTU822bdtMXFycadeuncnPzzfG/P7z0rJlS5OcnGx++OEH07VrVxMZGWmuu+4688UXX5itW7eaq666yjzwwAPGGGPOnDljAgMDzeOPP2527dplfvjhB7NgwQKzb98+t/e/KijP3J46dco8+uijpmnTpiY3N7fEesytXWWd2+zsbNOqVSuzYsWKMrdjbisPYaQSleWHe/Xq1aZGjRrm8OHDzrKSzowkJSWdd5v9+/c3//jHP5zPe/fubXr27Ol8fvbsWePv72/uueceZ1nhXwWbNm0yxhgTFxdn4uPjy7KL1Vp5fmEdPXrUXHnlleapp54qtd7AgQNN//79XcruuuuuIm9qNWvWdPkrqKRtSjLfffedMeb3n5e5c+c66yxZssRIMikpKc6yxMRE06JFC2OMMceOHTOSzPr168u0n1WdO3M7c+ZM4+/vbySZFi1anPesCHNrV1nndsSIEebee+91qx1zW3lYM3IRTZo0SbVq1XI+9u/fr507d6px48YKDQ111ouKiiq2fefOnV2e5+fna+LEiWrXrp2Cg4NVq1YtrVmzRvv373ep1759e+e/vby8VKdOHbVr185ZVvi9QkeOHJEkPfjgg1q6dKk6duyoJ554Qhs3brywHa8mipu/c2VlZal///5q3bq1nn32WWd5mzZtnG369esnSdq5c2eReS5u3ps0aaJ69eq5lKWmpmrQoEFq1qyZAgICFB4eLkmlznvhHP9x3gvnPDg4WMOGDVNsbKzi4uI0Y8YMHT58uCyHpVoobW7vuusubdu2Tf/+97919dVX64477tDp06clMbdVQXFz++GHH+qzzz5TUlJSie2Y24vL7S/KQ/k98MADuuOOO5zPw8LC3Grv7+/v8nzKlCmaMWOGkpKS1K5dO/n7++vRRx8tsmCqZs2aLs89PDxcygoXbxUUFEiS+vXrp3379mnVqlVau3atbrjhBo0cOVJTp051a7zVTWnzd/LkSfXt21dXXHGF3n//fZfju2rVKueCY19fX7e2+cc5l6S4uDg1adJEc+bMUVhYmAoKCtS2bdtS571wjv9YVjjnkjR//nw9/PDDSk5O1rJlyzR27FitXbtWXbt2dWvMVVFpcxsYGKjAwEA1b95cXbt2Ve3atfX+++9r0KBBzG0VUNzcTp8+XT///LOCgoJc6t52222Kjo7W+vXrmduLjDByEQUHBys4ONilrEWLFjpw4IDS09OdKfjrr78uU39ffvmlbrnlFt19992SfgsTP/30k1q3bn3BY61Xr56GDh2qoUOHKjo6Wv/85z8v+zBS3PxJv50RiY2NlcPh0IcffigfHx+X15s0aVKkTYsWLYrMc1nm/dixY9q5c6fmzJmj6OhoSdIXX3zhzm6UqlOnTurUqZPGjBmjbt26afHixVXuTa08SprbPzK/XdpWbm6uJOa2KihubkePHq377rvPpaxdu3Z6+eWXFRcXJ4m5vdgIIxXs1KlT2rVrl/P5nj17tH37dgUHB+vKK68sUv/GG29URESEhg4dqpdeekknT57U2LFjJem8t5s1b95cy5cv18aNG1W7dm1Nnz5d6enpFxxGxo0bp8jISLVp00a5ubn6+OOP1apVqwvqs6pwd/6ysrLUp08f5eTkaNGiRcrKylJWVpak3wKdl5dXsdt56KGH1KtXL02fPl1xcXH67LPPtHr16vPOee3atVWnTh3Nnj1bDRo00P79+zV69OgL2OPf93P27Nm6+eabFRYWpp07dyo1NVVDhgy54L4vFe7O7e7du7Vs2TL16dNH9erV0y+//KLJkyfL19dXN910U4nbYW4vPnfnNjQ01OXSeKErr7xSTZs2LXE7zG0lsr1opbpZt26dkVTkMXTo0BLbFN7a6+3tbVq2bGk++ugjI8kkJycbY35f2LRt2zaXdseOHTO33HKLqVWrlqlfv74ZO3asGTJkiLnlllucdXr37m0eeeQRl3ZNmjQxL7/8skuZzlm8NXHiRNOqVSvj6+trgoODzS233GJ2795dziNStbg7fyXVl2T27NlT6rZmz55tGjZs6LxF8PnnnzehoaHO1wtvEfyjtWvXmlatWhmHw2Hat29v1q9fX+yC53N/XgrH+d///tdZNn/+fOfCu7S0NDNgwADToEED4+3tbZo0aWLGjRvnXOlfHbg7twcPHjT9+vUz9evXNzVr1jSNGjUygwcPNjt27Djvtpjbi6s877t/dO5xLg1zWzk8jDGmErMOyuHLL79Uz549tWvXLkVERNgeDi6S4cOHa8eOHdqwYYPtoaCCMbfVF3NbMbhMcwl4//33VatWLTVv3ly7du3SI488oh49ehBEqrmpU6fqxhtvlL+/v1avXq2FCxfq9ddftz0sVADmtvpibisHYeQScPLkST355JPav3+/6tatq5iYGE2bNs32sFDJNm/e7Fwn1KxZM73yyitFFtWhamJuqy/mtnJwmQYAAFjFh54BAACrCCMAAMAqwggAALCKMAIAAKwijAAAAKsIIwAAwCrCCAAAsIowAgAArPp/qcMbpJG8s6gAAAAASUVORK5CYII=\n"
},
"metadata": {}
}
],
"source": [
"plt.bar(x = bleu_train.keys(), height = bleu_train.values())\n",
"plt.title(\"BLEU Score with the training set\")\n",
"plt.ylim((0,1))\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "f3cf03db",
"metadata": {
"id": "f3cf03db",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 452
},
"outputId": "bc1f4f46-5e1b-4beb-8c6a-c0be5257b6fb"
},
"outputs": [
{
"output_type": "display_data",
"data": {
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
],
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGzCAYAAAD9pBdvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAviElEQVR4nO3de1RV1aLH8R+gbBACRAVFUdQ6im/DMB9kJUpmpOfU1bSTxvVxLC2N20PTNLNEMw07WQ71pI46pmbZqVTMSI+aDjUf3br5zGcqKHoExQKDef9osGvHQzZCM/D7GWOP4Z57zrnm2hPZP9aaa20PY4wRAACAJZ62BwAAAK5vhBEAAGAVYQQAAFhFGAEAAFYRRgAAgFWEEQAAYBVhBAAAWEUYAQAAVhFGAACAVYQRAFY8//zz8vDwcKtuRkZGuY5hw4YN8vDw0IoVK8q1XwDuIYyg0lm0aJE8PDxcHiEhIbrjjju0Zs2aQvU9PDw0atSoEvu8/fbbC/VZ8GjevLmz3tU+FFu1aqXbb7/9qvuQm5ur2bNnq3379goICFBQUJBatmyp4cOHa9++fVdtX1VNnTpVH374Ybn3u2TJEiUnJ5d7v6V16tQpPf/889qzZ0+FbsfmflbU3OH6UM32AICyeuGFF9S4cWMZY5Senq5Fixbp7rvv1scff6x77rnH7f4aNGigpKSkQuWBgYHlMVwX9913n9asWaMBAwZo2LBhunLlivbt26dPPvlEnTt3dglAVdWECRM0duxYl7KpU6fq/vvvV9++fct1W0uWLNE333yjMWPGlGu/pXXq1ClNnjxZERERateuXYVtx+Z+VtTc4fpAGEGl1atXL3Xo0MH5fMiQIQoNDdW7775bpjASGBiov/71r+U5xCLt2LFDn3zyiV566SU9++yzLq+9/vrrunDhQoWPocCPP/4ob29veXr+/gdJq1WrpmrV+BUEgNM0qEKCgoLk6+v7h/+A++677yRJXbp0KfSal5eXatWq5VJ28uRJDRkyRGFhYXI4HGrcuLEeeeQR5ebmOuscPnxY//Vf/6Xg4GDVqFFDt956q1atWuXST8H6iKVLl2rChAmqX7++atSooaysLEnStm3bdNdddykwMFA1atRQt27d9MUXX5S4L8YY1a5dW4mJic6y/Px8BQUFycvLyyVYTZ8+XdWqVdOlS5ckFV4z4uHhoezsbC1evNh5iuzhhx922d6FCxf08MMPKygoSIGBgUpISNDly5dLHOPtt9+uVatW6dixY85+IyIiXOrk5+frpZdeUoMGDeTj46Pu3bvr0KFDhfoqy3u0YcMG3XLLLZKkhIQE5xgWLVrkVr8XL17UmDFjFBERIYfDoZCQEPXo0UO7du0q9X7+1rp169S1a1cFBQXJ399fzZo1KxSQc3JyNGnSJN14441yOBwKDw/X008/rZycHGed0swdUJI/9m9toASZmZnKyMiQMUZnzpzR3//+d126dKnMRzfy8vKKXAvi6+srPz+/ax2uU6NGjSRJ//znP9WlS5cSw9OpU6cUHR2tCxcuaPjw4WrevLlOnjypFStW6PLly/L29lZ6ero6d+6sy5cv6/HHH1etWrW0ePFi3XvvvVqxYoX+/Oc/u/Q5ZcoUeXt768knn1ROTo68vb31+eefq1evXoqKitKkSZPk6emphQsX6s4779SmTZsUHR1d5Pg8PDzUpUsXbdy40Vn2v//7v8rMzJSnp6e++OIL9e7dW5K0adMmtW/fXv7+/kX29fbbb2vo0KGKjo7W8OHDJUlNmzZ1qdOvXz81btxYSUlJ2rVrlxYsWKCQkBBNnz692Pdw/PjxyszM1Pfff69XX31VkgqNYdq0afL09NSTTz6pzMxMvfzyy3rwwQe1bds2Z52yvkeRkZF64YUXNHHiRA0fPlwxMTGSpM6dO7vV74gRI7RixQqNGjVKLVq00Llz57R582bt3btXN998c6n289f+7//+T/fcc4/atGmjF154QQ6HQ4cOHXIJQfn5+br33nu1efNmDR8+XJGRkfr666/16quv6sCBA841IqWZO6BEBqhkFi5caCQVejgcDrNo0aJC9SWZkSNHlthnt27diuxTkvnb3/7mrDdp0iQjyZw9e7bIflq2bGm6detW4rby8/Od2wsNDTUDBgwwc+bMMceOHStUd9CgQcbT09Ps2LGjyH6MMWbMmDFGktm0aZPztYsXL5rGjRubiIgIk5eXZ4wxZv369UaSadKkibl8+bJLPzfddJOJi4tz9mmMMZcvXzaNGzc2PXr0KHF/ZsyYYby8vExWVpYxxpjXXnvNNGrUyERHR5tnnnnGGGNMXl6eCQoKMk888YSzXcF7+Wt+fn5m8ODBhbZRUPe///u/Xcr//Oc/m1q1apU4PmOM6d27t2nUqFGh8oL3JDIy0uTk5DjLZ8+ebSSZr7/+2hhz7e/Rjh07jCSzcOFCl3J3+g0MDLzqz3Fx+1mUV199tcSfZWOMefvtt42np6fLz5YxxsydO9dIMl988YWzrLi5A0qD0zSotObMmaN169Zp3bp1euedd3THHXdo6NCh+uCDD8rUX0REhLO/Xz/KezGgh4eH1q5dqxdffFE1a9bUu+++q5EjR6pRo0bq37+/89RGfn6+PvzwQ8XHx7usjfl1P5K0evVqRUdHq2vXrs7X/P39NXz4cB09elTffvutS7vBgwfL19fX+XzPnj06ePCgBg4cqHPnzikjI0MZGRnKzs5W9+7dtXHjRuXn5xe7PzExMcrLy9OWLVsk/XwEJCYmRjExMdq0aZMk6ZtvvtGFCxecRwXKasSIEYW2fe7cOeepprJKSEiQt7e3S7/Sz6e/pGt/j4rjTr9BQUHatm2bTp06dU37WiAoKEiS9K9//avYsb/33nuKjIxU8+bNnWPLyMjQnXfeKUlav359uYwF4DQNKq3o6GiXD+kBAwaoffv2GjVqlO655x6XD5fS8PPzU2xs7DWPqzT3znA4HBo/frzGjx+v06dP69///rdmz56t5cuXq3r16nrnnXd09uxZZWVlqVWrViX2dezYMXXs2LFQeWRkpPP1X/fRuHFjl3oHDx6U9HNIKU5mZqZq1qxZ5Gs333yzatSooU2bNikuLk6bNm3S5MmTVbduXf3973/Xjz/+6Awlvw5MZdGwYUOX5wVj+s9//qOAgIAK6Ve69veoOO70+/LLL2vw4MEKDw9XVFSU7r77bg0aNEhNmjRxa5sF+vfvrwULFmjo0KEaO3asunfvrr/85S+6//77nQuaDx48qL1796pOnTpF9nHmzJkybRv4LcIIqgxPT0/dcccdmj17tg4ePKiWLVuW+zZ8fHwkST/88EORr1++fNlZp7Tq1aunBx54QPfdd59atmyp5cuXuyxuLG+/PioiyflX8YwZM4q97LSktQfVq1dXx44dtXHjRh06dEhpaWmKiYlRaGiorly5om3btmnTpk1q3rx5sR9qpeXl5VVkuTGmQvu91veoOO70269fP8XExGjlypX69NNPNWPGDE2fPl0ffPCBevXq5fa2fX19tXHjRq1fv16rVq1SSkqKli1bpjvvvFOffvqpvLy8lJ+fr9atW2vWrFlF9hEeHu72doGiEEZQpfz000+S5Lxio7wVLD7dv39/oV/Ely9f1okTJ9SzZ88y9V29enW1adNGBw8eVEZGhkJCQhQQEKBvvvnmqmPav39/ofKCm6cVjLk4BQsNAwICynxkKCYmRtOnT9dnn32m2rVrq3nz5vLw8FDLli21adMmbdq0qVSXW5f2jqzuutZ+r/U9Km777vZbr149Pfroo3r00Ud15swZ3XzzzXrppZecYcTd/fT09FT37t3VvXt3zZo1S1OnTtX48eO1fv16xcbGqmnTpvrqq6/UvXv3q/ZdUXOH6wNrRlBlXLlyRZ9++qm8vb2dpyjKW/fu3eXt7a0333yz0Hn2efPm6aeffrrqX6kHDx7U8ePHC5VfuHBBW7duVc2aNVWnTh15enqqb9+++vjjj/Xll18Wql/wV/vdd9+t7du3a+vWrc7XsrOzNW/ePEVERKhFixYljicqKkpNmzbVK6+8UmSIO3v2bIntpZ/DSE5OjpKTk9W1a1fnB1NMTIzefvttnTp1qlTrRfz8/CrkPit+fn7KzMwsc/trfY8Krsb67b6Vtt+8vLxC4w8JCVFYWJjLJbbu7Of58+cLlRUcnSnos1+/fjp58qTmz59fqO4PP/yg7Oxsl23/nvfIQdXCkRFUWmvWrHH+9X/mzBktWbJEBw8e1NixYwutH/jyyy/14osvFurj9ttvd65jyMzM1DvvvFPktgouFw4JCdHEiRM1YcIE3Xbbbbr33ntVo0YNbdmyRe+++6569uyp+Pj4Esf91VdfaeDAgerVq5diYmIUHByskydPavHixTp16pSSk5Odpw2mTp2qTz/9VN26dXNeWnn69Gm999572rx5s4KCgjR27Fi9++676tWrlx5//HEFBwdr8eLFOnLkiN5///2r3tDM09NTCxYsUK9evdSyZUslJCSofv36OnnypNavX6+AgAB9/PHHJfbRqVMnVatWTfv373de2ilJt912m958801JKlUYiYqK0meffaZZs2YpLCxMjRs3LnI9jLuioqK0bNkyJSYm6pZbbpG/v/9V5+nXrvU9atq0qYKCgjR37lzdcMMN8vPzU8eOHdW4ceNS9Xvx4kU1aNBA999/v9q2bSt/f3999tln2rFjh2bOnFmm/XzhhRe0ceNG9e7dW40aNdKZM2f0xhtvqEGDBs7/Ew899JCWL1+uESNGaP369erSpYvy8vK0b98+LV++XGvXrnWu26qoucN1wvLVPIDbirq018fHx7Rr1868+eabLpdIGmOKvWRXkpkyZYoxpuRLe4v6b/LOO++YW2+91fj5+RmHw2GaN29uJk+ebH788cerjj89Pd1MmzbNdOvWzdSrV89Uq1bN1KxZ09x5551mxYoVheofO3bMDBo0yNSpU8c4HA7TpEkTM3LkSJdLUb/77jtz//33m6CgIOPj42Oio6PNJ5984tJPwWWs7733XpHj2r17t/nLX/5iatWqZRwOh2nUqJHp16+fSU1Nveo+GWPMLbfcYiSZbdu2Ocu+//57I8mEh4cXql/Upb379u0zt912m/H19TWSnJeKFndJdcHPwpEjR0oc26VLl8zAgQNNUFCQkeS8/LW49+TIkSNFXop7Le/Rv/71L9OiRQtTrVq1Qn1frd+cnBzz1FNPmbZt25obbrjB+Pn5mbZt25o33nijVPtZlNTUVNOnTx8TFhZmvL29TVhYmBkwYIA5cOCAS73c3Fwzffp007JlS+NwOEzNmjVNVFSUmTx5ssnMzHTWK27ugNLwMOYaV34BAABcA9aMAAAAqwgjAADAKsIIAACwyu0wsnHjRsXHxyssLEweHh7OL0oqyYYNG3TzzTfL4XDoxhtvrNAbOgEAgMrF7TCSnZ2ttm3bas6cOaWqf+TIEfXu3Vt33HGH9uzZozFjxmjo0KFau3at24MFAABVzzVdTePh4aGVK1eqb9++xdZ55plntGrVKpe7SD7wwAO6cOGCUlJSyrppAABQRVT4Tc+2bt1a6DbHcXFxJX4Tak5OjstdBfPz83X+/HnVqlWLWw4DAFBJGGN08eJFhYWFlXgDxgoPI2lpaQoNDXUpCw0NVVZWln744YdCX9olSUlJSZo8eXJFDw0AAPwOTpw4oQYNGhT7+h/ydvDjxo1TYmKi83lmZqYaNmyoEydOXNPXhAMAgN9PVlaWwsPDdcMNN5RYr8LDSN26dZWenu5Slp6eroCAgCKPikiSw+GQw+EoVB4QEEAYAQCgkrnaEosKv89Ip06dlJqa6lK2bt06derUqaI3DQAAKgG3w8ilS5e0Z88e7dmzR9LPl+7u2bPH+ZXo48aN06BBg5z1R4wYocOHD+vpp5/Wvn379MYbb2j58uV64oknymcPAABApeZ2GPnyyy/Vvn17tW/fXpKUmJio9u3ba+LEiZKk06dPO4OJJDVu3FirVq3SunXr1LZtW82cOVMLFixQXFxcOe0CAACozCrFt/ZmZWUpMDBQmZmZrBkBAKCSKO3nN99NAwAArCKMAAAAqwgjAADAKsIIAACwijACAACsIowAAACrCCMAAMAqwggAALCKMAIAAKwijAAAAKsIIwAAwCrCCAAAsIowAgAArCKMAAAAqwgjAADAKsIIAACwijACAACsIowAAACrCCMAAMAqwggAALCKMAIAAKwijAAAAKsIIwAAwCrCCAAAsIowAgAArCKMAAAAqwgjAADAKsIIAACwijACAACsIowAAACrCCMAAMAqwggAALCKMAIAAKwijAAAAKsIIwAAwCrCCAAAsIowAgAArCKMAAAAqwgjAADAKsIIAACwijACAACsIowAAACrCCMAAMAqwggAALCKMAIAAKwijAAAAKsIIwAAwCrCCAAAsIowAgAArCKMAAAAqwgjAADAKsIIAACwijACAACsIowAAACrCCMAAMAqwggAALCKMAIAAKwijAAAAKsIIwAAwCrCCAAAsIowAgAArCKMAAAAqwgjAADAqjKFkTlz5igiIkI+Pj7q2LGjtm/fXmL95ORkNWvWTL6+vgoPD9cTTzyhH3/8sUwDBgAAVYvbYWTZsmVKTEzUpEmTtGvXLrVt21ZxcXE6c+ZMkfWXLFmisWPHatKkSdq7d6/+8Y9/aNmyZXr22WevefAAAKDyczuMzJo1S8OGDVNCQoJatGihuXPnqkaNGnrrrbeKrL9lyxZ16dJFAwcOVEREhHr27KkBAwZc9WgKAAC4PrgVRnJzc7Vz507Fxsb+0oGnp2JjY7V169Yi23Tu3Fk7d+50ho/Dhw9r9erVuvvuu4vdTk5OjrKyslweAACgaqrmTuWMjAzl5eUpNDTUpTw0NFT79u0rss3AgQOVkZGhrl27yhijn376SSNGjCjxNE1SUpImT57sztAAAEAlVeFX02zYsEFTp07VG2+8oV27dumDDz7QqlWrNGXKlGLbjBs3TpmZmc7HiRMnKnqYAADAEreOjNSuXVteXl5KT093KU9PT1fdunWLbPPcc8/poYce0tChQyVJrVu3VnZ2toYPH67x48fL07NwHnI4HHI4HO4MDQAAVFJuHRnx9vZWVFSUUlNTnWX5+flKTU1Vp06dimxz+fLlQoHDy8tLkmSMcXe8AACginHryIgkJSYmavDgwerQoYOio6OVnJys7OxsJSQkSJIGDRqk+vXrKykpSZIUHx+vWbNmqX379urYsaMOHTqk5557TvHx8c5QAgAArl9uh5H+/fvr7NmzmjhxotLS0tSuXTulpKQ4F7UeP37c5UjIhAkT5OHhoQkTJujkyZOqU6eO4uPj9dJLL5XfXgAAgErLw1SCcyVZWVkKDAxUZmamAgICbA8HAACUQmk/v/luGgAAYBVhBAAAWEUYAQAAVhFGAACAVYQRAABgFWEEAABYRRgBAABWEUYAAIBVhBEAAGAVYQQAAFhFGAEAAFYRRgAAgFWEEQAAYBVhBAAAWEUYAQAAVhFGAACAVYQRAABgFWEEAABYRRgBAABWEUYAAIBVhBEAAGAVYQQAAFhFGAEAAFYRRgAAgFWEEQAAYBVhBAAAWEUYAQAAVhFGAACAVYQRAABgFWEEAABYRRgBAABWEUYAAIBVhBEAAGAVYQQAAFhFGAEAAFYRRgAAgFWEEQAAYBVhBAAAWEUYAQAAVhFGAACAVYQRAABgFWEEAABYRRgBAABWEUYAAIBVhBEAAGAVYQQAAFhFGAEAAFYRRgAAgFWEEQAAYBVhBAAAWEUYAQAAVhFGAACAVYQRAABgFWEEAABYRRgBAABWEUYAAIBVhBEAAGAVYQQAAFhFGAEAAFYRRgAAgFWEEQAAYBVhBAAAWEUYAQAAVpUpjMyZM0cRERHy8fFRx44dtX379hLrX7hwQSNHjlS9evXkcDj0pz/9SatXry7TgAEAQNVSzd0Gy5YtU2JioubOnauOHTsqOTlZcXFx2r9/v0JCQgrVz83NVY8ePRQSEqIVK1aofv36OnbsmIKCgspj/AAAoJLzMMYYdxp07NhRt9xyi15//XVJUn5+vsLDw/XYY49p7NixherPnTtXM2bM0L59+1S9evUyDTIrK0uBgYHKzMxUQEBAmfoAAAC/r9J+frt1miY3N1c7d+5UbGzsLx14eio2NlZbt24tss1HH32kTp06aeTIkQoNDVWrVq00depU5eXlFbudnJwcZWVluTwAAEDV5FYYycjIUF5enkJDQ13KQ0NDlZaWVmSbw4cPa8WKFcrLy9Pq1av13HPPaebMmXrxxReL3U5SUpICAwOdj/DwcHeGCQAAKpEKv5omPz9fISEhmjdvnqKiotS/f3+NHz9ec+fOLbbNuHHjlJmZ6XycOHGioocJAAAscWsBa+3ateXl5aX09HSX8vT0dNWtW7fINvXq1VP16tXl5eXlLIuMjFRaWppyc3Pl7e1dqI3D4ZDD4XBnaAAAoJJy68iIt7e3oqKilJqa6izLz89XamqqOnXqVGSbLl266NChQ8rPz3eWHThwQPXq1SsyiAAAgOuL26dpEhMTNX/+fC1evFh79+7VI488ouzsbCUkJEiSBg0apHHjxjnrP/LIIzp//rxGjx6tAwcOaNWqVZo6dapGjhxZfnsBAAAqLbfvM9K/f3+dPXtWEydOVFpamtq1a6eUlBTnotbjx4/L0/OXjBMeHq61a9fqiSeeUJs2bVS/fn2NHj1azzzzTPntBQAAqLTcvs+IDdxnBACAyqdC7jMCAABQ3ggjAADAKsIIAACwijACAACsIowAAACrCCMAAMAqwggAALCKMAIAAKwijAAAAKsIIwAAwCrCCAAAsIowAgAArCKMAAAAqwgjAADAKsIIAACwijACAACsIowAAACrCCMAAMAqwggAALCKMAIAAKwijAAAAKsIIwAAwCrCCAAAsIowAgAArCKMAAAAqwgjAADAKsIIAACwijACAACsIowAAACrCCMAAMAqwggAALCKMAIAAKyqZnsAtkWMXWV7CNeto9N62x4CAOAPgCMjAADAKsIIAACwijACAACsIowAAACrCCMAAMAqwggAALCKMAIAAKwijAAAAKsIIwAAwCrCCAAAsIowAgAArCKMAAAAqwgjAADAKsIIAACwijACAACsIowAAACrCCMAAMAqwggAALCKMAIAAKwijAAAAKsIIwAAwCrCCAAAsIowAgAArCKMAAAAqwgjAADAKsIIAACwijACAACsIowAAACrCCMAAMAqwggAALCqTGFkzpw5ioiIkI+Pjzp27Kjt27eXqt3SpUvl4eGhvn37lmWzAACgCnI7jCxbtkyJiYmaNGmSdu3apbZt2youLk5nzpwpsd3Ro0f15JNPKiYmpsyDBQAAVY/bYWTWrFkaNmyYEhIS1KJFC82dO1c1atTQW2+9VWybvLw8Pfjgg5o8ebKaNGly1W3k5OQoKyvL5QEAAKomt8JIbm6udu7cqdjY2F868PRUbGystm7dWmy7F154QSEhIRoyZEiptpOUlKTAwEDnIzw83J1hAgCASsStMJKRkaG8vDyFhoa6lIeGhiotLa3INps3b9Y//vEPzZ8/v9TbGTdunDIzM52PEydOuDNMAABQiVSryM4vXryohx56SPPnz1ft2rVL3c7hcMjhcFTgyAAAwB+FW2Gkdu3a8vLyUnp6ukt5enq66tatW6j+d999p6NHjyo+Pt5Zlp+f//OGq1XT/v371bRp07KMGwAAVBFunabx9vZWVFSUUlNTnWX5+flKTU1Vp06dCtVv3ry5vv76a+3Zs8f5uPfee3XHHXdoz549rAUBAADun6ZJTEzU4MGD1aFDB0VHRys5OVnZ2dlKSEiQJA0aNEj169dXUlKSfHx81KpVK5f2QUFBklSoHAAAXJ/cDiP9+/fX2bNnNXHiRKWlpaldu3ZKSUlxLmo9fvy4PD25sSsAACgdD2OMsT2Iq8nKylJgYKAyMzMVEBBQrn1HjF1Vrv2h9I5O6217CACAClTaz28OYQAAAKsIIwAAwCrCCAAAsIowAgAArCKMAAAAqwgjAADAKsIIAACwijACAACsIowAAACr3L4dPFBZcHdde7i7LgB3cGQEAABYRRgBAABWEUYAAIBVhBEAAGAVYQQAAFhFGAEAAFYRRgAAgFWEEQAAYBVhBAAAWEUYAQAAVhFGAACAVYQRAABgFWEEAABYRRgBAABWEUYAAIBVhBEAAGAVYQQAAFhFGAEAAFYRRgAAgFWEEQAAYBVhBAAAWEUYAQAAVhFGAACAVYQRAABgFWEEAABYRRgBAABWEUYAAIBVhBEAAGAVYQQAAFhFGAEAAFYRRgAAgFWEEQAAYBVhBAAAWEUYAQAAVlWzPQAAcFfE2FW2h3DdOjqtt+0hoAriyAgAALCKMAIAAKwijAAAAKsIIwAAwCrCCAAAsIowAgAArCKMAAAAqwgjAADAKsIIAACwijACAACsIowAAACrCCMAAMAqwggAALCKMAIAAKwijAAAAKsIIwAAwCrCCAAAsIowAgAArCpTGJkzZ44iIiLk4+Ojjh07avv27cXWnT9/vmJiYlSzZk3VrFlTsbGxJdYHAADXF7fDyLJly5SYmKhJkyZp165datu2reLi4nTmzJki62/YsEEDBgzQ+vXrtXXrVoWHh6tnz546efLkNQ8eAABUfm6HkVmzZmnYsGFKSEhQixYtNHfuXNWoUUNvvfVWkfX/+c9/6tFHH1W7du3UvHlzLViwQPn5+UpNTS12Gzk5OcrKynJ5AACAqsmtMJKbm6udO3cqNjb2lw48PRUbG6utW7eWqo/Lly/rypUrCg4OLrZOUlKSAgMDnY/w8HB3hgkAACoRt8JIRkaG8vLyFBoa6lIeGhqqtLS0UvXxzDPPKCwszCXQ/Na4ceOUmZnpfJw4ccKdYQIAgEqk2u+5sWnTpmnp0qXasGGDfHx8iq3ncDjkcDh+x5EBAABb3AojtWvXlpeXl9LT013K09PTVbdu3RLbvvLKK5o2bZo+++wztWnTxv2RAgCAKsmt0zTe3t6KiopyWXxasBi1U6dOxbZ7+eWXNWXKFKWkpKhDhw5lHy0AAKhy3D5Nk5iYqMGDB6tDhw6Kjo5WcnKysrOzlZCQIEkaNGiQ6tevr6SkJEnS9OnTNXHiRC1ZskQRERHOtSX+/v7y9/cvx10BAACVkdthpH///jp79qwmTpyotLQ0tWvXTikpKc5FrcePH5en5y8HXN58803l5ubq/vvvd+ln0qRJev75569t9AAAoNIr0wLWUaNGadSoUUW+tmHDBpfnR48eLcsmAADAdYLvpgEAAFYRRgAAgFWEEQAAYBVhBAAAWEUYAQAAVhFGAACAVYQRAABgFWEEAABYRRgBAABWEUYAAIBVhBEAAGAVYQQAAFhFGAEAAFYRRgAAgFWEEQAAYBVhBAAAWEUYAQAAVhFGAACAVYQRAABgFWEEAABYRRgBAABWEUYAAIBVhBEAAGAVYQQAAFhFGAEAAFYRRgAAgFWEEQAAYFU12wMAAECSIsausj2E69bRab2tbp8jIwAAwCrCCAAAsIowAgAArCKMAAAAqwgjAADAKsIIAACwijACAACsIowAAACrCCMAAMAqwggAALCKMAIAAKwijAAAAKsIIwAAwCrCCAAAsIowAgAArCKMAAAAqwgjAADAKsIIAACwijACAACsIowAAACrCCMAAMAqwggAALCKMAIAAKwijAAAAKsIIwAAwCrCCAAAsIowAgAArCKMAAAAqwgjAADAKsIIAACwijACAACsIowAAACrCCMAAMAqwggAALCqTGFkzpw5ioiIkI+Pjzp27Kjt27eXWP+9995T8+bN5ePjo9atW2v16tVlGiwAAKh63A4jy5YtU2JioiZNmqRdu3apbdu2iouL05kzZ4qsv2XLFg0YMEBDhgzR7t271bdvX/Xt21fffPPNNQ8eAABUfm6HkVmzZmnYsGFKSEhQixYtNHfuXNWoUUNvvfVWkfVnz56tu+66S0899ZQiIyM1ZcoU3XzzzXr99devefAAAKDyq+ZO5dzcXO3cuVPjxo1zlnl6eio2NlZbt24tss3WrVuVmJjoUhYXF6cPP/yw2O3k5OQoJyfH+TwzM1OSlJWV5c5wSyU/53K594nSqYj5/DXm1h7mtuqqyLllXu2pqHkt6NcYU2I9t8JIRkaG8vLyFBoa6lIeGhqqffv2FdkmLS2tyPppaWnFbicpKUmTJ08uVB4eHu7OcPEHF5hsewSoKMxt1cXcVk0VPa8XL15UYGBgsa+7FUZ+L+PGjXM5mpKfn6/z58+rVq1a8vDwsDiyP5asrCyFh4frxIkTCggIsD0clBPmtepibqsu5rZoxhhdvHhRYWFhJdZzK4zUrl1bXl5eSk9PdylPT09X3bp1i2xTt25dt+pLksPhkMPhcCkLCgpyZ6jXlYCAAH74qyDmtepibqsu5rawko6IFHBrAau3t7eioqKUmprqLMvPz1dqaqo6depUZJtOnTq51JekdevWFVsfAABcX9w+TZOYmKjBgwerQ4cOio6OVnJysrKzs5WQkCBJGjRokOrXr6+kpCRJ0ujRo9WtWzfNnDlTvXv31tKlS/Xll19q3rx55bsnAACgUnI7jPTv319nz57VxIkTlZaWpnbt2iklJcW5SPX48ePy9PzlgEvnzp21ZMkSTZgwQc8++6xuuukmffjhh2rVqlX57cV1yuFwaNKkSYVOaaFyY16rLua26mJur42Hudr1NgAAABWI76YBAABWEUYAAIBVhBEAAGAVYQQAAFhFGAEAAFYRRsrZxo0bFR8fr7CwMHl4eJT4hYD443F3/s6fP6/HHntMzZo1k6+vrxo2bKjHH3/c+eWO+OMoy//Nv/3tb2ratKl8fX1Vp04d9enTp9jv4YI91/J71xijXr168fvaMsJIOcvOzlbbtm01Z86cCt3OlStXKrT/65W783fq1CmdOnVKr7zyir755hstWrRIKSkpGjJkSLmPLTc3t9z7vJ6U5f9mVFSUFi5cqL1792rt2rUyxqhnz57Ky8sr17Ext9fmWn7vJicnV+h3njG3pWRQYSSZlStXXrXe3r17TZcuXYzD4TCRkZFm3bp1Lm2PHDliJJmlS5ea2267zTgcDrNw4UKTkZFhHnjgARMWFmZ8fX1Nq1atzJIlS1z67tatmxk1apQZPXq0CQoKMiEhIWbevHnm0qVL5uGHHzb+/v6madOmZvXq1c4258+fNwMHDjS1a9c2Pj4+5sYbbzRvvfVWeb41lUJp5++3li9fbry9vc2VK1dKrDdv3jzToEED4+vra/r27WtmzpxpAgMDna9PmjTJtG3b1syfP99EREQYDw8PY4wxa9asMV26dDGBgYEmODjY9O7d2xw6dMjZruDnZdmyZaZr167Gx8fHdOjQwezfv99s377dREVFGT8/P3PXXXeZM2fOONutX7/e3HLLLaZGjRomMDDQdO7c2Rw9etTt/a8Myjq3X331lZHk8n4Xhbm1x5253b17t6lfv745ffp0qdsxtxWDMFKBSvPD/dNPP5lmzZqZHj16mD179phNmzaZ6OjoIsNIRESEef/9983hw4fNqVOnzPfff29mzJhhdu/ebb777jvz2muvGS8vL7Nt2zZn/926dTM33HCDmTJlijlw4ICZMmWK8fLyMr169TLz5s0zBw4cMI888oipVauWyc7ONsYYM3LkSNOuXTuzY8cOc+TIEbNu3Trz0UcfVdTb9IdV1g+s+fPnm9q1a5dYZ/PmzcbT09PMmDHD7N+/38yZM8cEBwcX+qVW8Mtn165d5quvvjLGGLNixQrz/vvvm4MHD5rdu3eb+Ph407p1a5OXl2eM+eXnpXnz5iYlJcV8++235tZbbzVRUVHm9ttvN5s3bza7du0yN954oxkxYoQxxpgrV66YwMBA8+STT5pDhw6Zb7/91ixatMgcO3bM7f2vDMoyt5cuXTJjxowxjRs3Njk5OcXWY27tKu3cZmdnm8jISPPhhx+Wuh1zW3EIIxWoND/ca9asMdWqVTOnT592lhV3ZCQ5Ofmq2+zdu7f5n//5H+fzbt26ma5duzqf//TTT8bPz8889NBDzrKCvwq2bt1qjDEmPj7eJCQklGYXq7SyfGCdPXvWNGzY0Dz77LMl1uvfv7/p3bu3S9mDDz5Y6Jda9erVXf4KKm6bkszXX39tjPnl52XBggXOOu+++66RZFJTU51lSUlJplmzZsYYY86dO2ckmQ0bNpRqPys7d+Z2zpw5xs/Pz0gyzZo1u+pREebWrtLO7fDhw82QIUPcasfcVhzWjPyOpk6dKn9/f+fj+PHj2r9/v8LDw1W3bl1nvejo6CLbd+jQweV5Xl6epkyZotatWys4OFj+/v5au3atjh8/7lKvTZs2zn97eXmpVq1aat26tbOs4HuFzpw5I0l65JFHtHTpUrVr105PP/20tmzZcm07XkUUNX+/lpWVpd69e6tFixZ6/vnnneUtW7Z0tunVq5ckaf/+/YXmuah5b9SokerUqeNSdvDgQQ0YMEBNmjRRQECAIiIiJKnEeS+Y49/Oe8GcBwcH6+GHH1ZcXJzi4+M1e/ZsnT59ujRvS5VQ0tw++OCD2r17t/7973/rT3/6k/r166cff/xREnNbGRQ1tx999JE+//xzJScnF9uOuf19uf1FeSi7ESNGqF+/fs7nYWFhbrX38/NzeT5jxgzNnj1bycnJat26tfz8/DRmzJhCC6aqV6/u8tzDw8OlrGDxVn5+viSpV69eOnbsmFavXq1169ape/fuGjlypF555RW3xlvVlDR/Fy9e1F133aUbbrhBK1eudHl/V69e7Vxw7Ovr69Y2fzvnkhQfH69GjRpp/vz5CgsLU35+vlq1alXivBfM8W/LCuZckhYuXKjHH39cKSkpWrZsmSZMmKB169bp1ltvdWvMlVFJcxsYGKjAwEDddNNNuvXWW1WzZk2tXLlSAwYMYG4rgaLmdtasWfruu+8UFBTkUve+++5TTEyMNmzYwNz+zggjv6Pg4GAFBwe7lDVr1kwnTpxQenq6MwXv2LGjVP198cUX6tOnj/76179K+jlMHDhwQC1atLjmsdapU0eDBw/W4MGDFRMTo6eeeuq6DyNFzZ/08xGRuLg4ORwOffTRR/Lx8XF5vVGjRoXaNGvWrNA8l2bez507p/3792v+/PmKiYmRJG3evNmd3ShR+/bt1b59e40bN06dOnXSkiVLKt0vtbIobm5/y/x8als5OTmSmNvKoKi5HTt2rIYOHepS1rp1a7366quKj4+XxNz+3ggj5ezSpUs6dOiQ8/mRI0e0Z88eBQcHq2HDhoXq9+jRQ02bNtXgwYP18ssv6+LFi5owYYIkXfVys5tuukkrVqzQli1bVLNmTc2aNUvp6enXHEYmTpyoqKgotWzZUjk5Ofrkk08UGRl5TX1WFu7OX1ZWlnr27KnLly/rnXfeUVZWlrKysiT9HOi8vLyK3M5jjz2m2267TbNmzVJ8fLw+//xzrVmz5qpzXrNmTdWqVUvz5s1TvXr1dPz4cY0dO/Ya9viX/Zw3b57uvfdehYWFaf/+/Tp48KAGDRp0zX3/Ubg7t4cPH9ayZcvUs2dP1alTR99//72mTZsmX19f3X333cVuh7n9/bk7t3Xr1nU5NV6gYcOGaty4cbHbYW4rkO1FK1XN+vXrjaRCj8GDBxfbpuDSXm9vb9O8eXPz8ccfG0kmJSXFGPPLwqbdu3e7tDt37pzp06eP8ff3NyEhIWbChAlm0KBBpk+fPs463bp1M6NHj3Zp16hRI/Pqq6+6lOlXi7emTJliIiMjja+vrwkODjZ9+vQxhw8fLuM7Urm4O3/F1Zdkjhw5UuK25s2bZ+rXr++8RPDFF180devWdb5ecIngb61bt85ERkYah8Nh2rRpYzZs2FDkgudf/7wUjPM///mPs2zhwoXOhXdpaWmmb9++pl69esbb29s0atTITJw40bnSvypwd25PnjxpevXqZUJCQkz16tVNgwYNzMCBA82+ffuuui3m9vdVlt+7v/Xr97kkzG3F8DDGmArMOiiDL774Ql27dtWhQ4fUtGlT28PB72TYsGHat2+fNm3aZHsoKGfMbdXF3JYPTtP8AaxcuVL+/v666aabdOjQIY0ePVpdunQhiFRxr7zyinr06CE/Pz+tWbNGixcv1htvvGF7WCgHzG3VxdxWDMLIH8DFixf1zDPP6Pjx46pdu7ZiY2M1c+ZM28NCBdu+fbtznVCTJk302muvFVpUh8qJua26mNuKwWkaAABgFTc9AwAAVhFGAACAVYQRAABgFWEEAABYRRgBAABWEUYAAIBVhBEAAGAVYQQAAFj1/zyM+QeGuc00AAAAAElFTkSuQmCC\n"
},
"metadata": {}
}
],
"source": [
"plt.bar(x = bleu_test.keys(), height = bleu_test.values())\n",
"plt.title(\"BLEU Score with the test set\")\n",
"plt.ylim((0,1))\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 18,
"id": "LYE8QofL1XC1",
"metadata": {
"id": "LYE8QofL1XC1"
},
"outputs": [],
"source": [
"model.save('/content/drive/MyDrive/Colab Notebooks/Models/french_to_english_translator.h5')"
]
},
{
"cell_type": "code",
"execution_count": 19,
"id": "PoS_noGF1eXf",
"metadata": {
"id": "PoS_noGF1eXf",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 626
},
"outputId": "ad5e59c7-b064-4eb0-a85b-5e76d7be1bfb"
},
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Setting queue=True in a Colab notebook requires sharing enabled. Setting `share=True` (you can turn this off by setting `share=False` in `launch()` explicitly).\n",
"\n",
"Colab notebook detected. To show errors in colab notebook, set debug=True in launch()\n",
"Running on public URL: https://2ebce967724a96d7c0.gradio.live\n",
"\n",
"This share link expires in 72 hours. For free permanent hosting and GPU upgrades, run `gradio deploy` from Terminal to deploy to Spaces (https://huggingface.co/spaces)\n"
]
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
"<div><iframe src=\"https://2ebce967724a96d7c0.gradio.live\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
]
},
"metadata": {}
},
{
"output_type": "execute_result",
"data": {
"text/plain": []
},
"metadata": {},
"execution_count": 19
}
],
"source": [
"import gradio as gr\n",
"\n",
"# Load the trained model\n",
"model = load_model('/content/drive/MyDrive/Colab Notebooks/Models/french_to_english_translator.h5')\n",
"\n",
"# Function to translate French to English\n",
"def translate_french_to_english(french_sentence):\n",
" # Clean the input sentence\n",
" french_sentence = clean(french_sentence)\n",
" # Tokenize and pad the input sentence\n",
" input_sequence = encode_sequences(src_tokenizer, src_length, [french_sentence])\n",
" # Generate the translation\n",
" english_translation = predict_seq(model, tar_tokenizer, input_sequence)\n",
" return english_translation\n",
"\n",
"# Create a Gradio interface\n",
"gr.Interface(\n",
" fn=translate_french_to_english,\n",
" inputs=\"text\",\n",
" outputs=\"text\",\n",
" title=\"French to English Translator\",\n",
" description=\"Translate French sentences to English.\"\n",
").launch()"
]
}
],
"metadata": {
"colab": {
"provenance": []
},
"kaggle": {
"accelerator": "nvidiaTeslaT4",
"dataSources": [
{
"datasetId": 592212,
"sourceId": 1067156,
"sourceType": "datasetVersion"
}
],
"dockerImageVersionId": 30260,
"isGpuEnabled": true,
"isInternetEnabled": true,
"language": "python",
"sourceType": "notebook"
},
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.2"
},
"papermill": {
"default_parameters": {},
"duration": 3017.154782,
"end_time": "2024-01-11T16:19:30.323673",
"environment_variables": {},
"exception": null,
"input_path": "__notebook__.ipynb",
"output_path": "__notebook__.ipynb",
"parameters": {},
"start_time": "2024-01-11T15:29:13.168891",
"version": "2.3.4"
}
},
"nbformat": 4,
"nbformat_minor": 5
} |