File size: 125,460 Bytes
7e2b005
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
{
  "cells": [
    {
      "cell_type": "code",
      "execution_count": 1,
      "id": "6a6de8e2",
      "metadata": {
        "id": "6a6de8e2"
      },
      "outputs": [],
      "source": [
        "import warnings\n",
        "warnings.filterwarnings('ignore')\n",
        "import string\n",
        "import re\n",
        "from unicodedata import normalize\n",
        "import numpy as np\n",
        "from keras.preprocessing.text import Tokenizer\n",
        "from keras.preprocessing.sequence import pad_sequences\n",
        "from keras.utils import to_categorical\n",
        "from keras.models import Sequential,load_model\n",
        "from keras.layers import LSTM,Dense,Embedding,RepeatVector,TimeDistributed\n",
        "from keras.callbacks import EarlyStopping\n",
        "from keras.preprocessing.text import Tokenizer\n",
        "from keras.preprocessing.sequence import pad_sequences\n",
        "from nltk.translate.bleu_score import corpus_bleu\n",
        "import pandas as pd\n",
        "from string import punctuation\n",
        "import matplotlib.pyplot as plt\n",
        "from IPython.display import Markdown, display\n",
        "\n",
        "def printmd(string):\n",
        "    # Print with Markdowns\n",
        "    display(Markdown(string))"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 2,
      "id": "cNkcJJtCi_I4",
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "cNkcJJtCi_I4",
        "outputId": "76757ad6-0fed-4b84-9bde-1d7991ff10ee"
      },
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "Mounted at /content/drive\n"
          ]
        }
      ],
      "source": [
        "from google.colab import drive\n",
        "drive.mount('/content/drive')"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 3,
      "id": "d7439528",
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 151
        },
        "id": "d7439528",
        "outputId": "da232d2d-0551-4d62-bc4f-119456037d6a"
      },
      "outputs": [
        {
          "output_type": "display_data",
          "data": {
            "text/plain": [
              "<IPython.core.display.Markdown object>"
            ],
            "text/markdown": "## 10000 \"parallel sentences\" will be loaded (original sentence + its translation)"
          },
          "metadata": {}
        },
        {
          "output_type": "display_data",
          "data": {
            "text/plain": [
              "<IPython.core.display.Markdown object>"
            ],
            "text/markdown": "## 9000 \"parallel sentences\" will be used to train the model"
          },
          "metadata": {}
        },
        {
          "output_type": "display_data",
          "data": {
            "text/plain": [
              "<IPython.core.display.Markdown object>"
            ],
            "text/markdown": "## 1000 \"parallel sentences\" will be used to test the model"
          },
          "metadata": {}
        }
      ],
      "source": [
        "total_sentences = 10000\n",
        "\n",
        "# Load the dataset\n",
        "dataset = pd.read_csv(\"/content/drive/MyDrive/Colab Notebooks/Dataset/eng_-french.csv\", nrows = total_sentences)\n",
        "\n",
        "# What proportion of the sentences will be used for the test set\n",
        "test_proportion = 0.1\n",
        "train_test_threshold = int( (1-test_proportion) * total_sentences)\n",
        "\n",
        "printmd(f'## {total_sentences} \"parallel sentences\" will be loaded (original sentence + its translation)')\n",
        "printmd(f'## {train_test_threshold} \"parallel sentences\" will be used to train the model')\n",
        "printmd(f'## {total_sentences-train_test_threshold} \"parallel sentences\" will be used to test the model')"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 4,
      "id": "5cf29feb",
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 363
        },
        "id": "5cf29feb",
        "outputId": "72534a51-013d-4569-8043-d1fbb474675c"
      },
      "outputs": [
        {
          "output_type": "execute_result",
          "data": {
            "text/plain": [
              "     English words/sentences French words/sentences\n",
              "1554             Let me die.     Laisse-moi mourir.\n",
              "2087            He's a slob.     C'est un flemmard.\n",
              "5470          I have to try.  Il faut que j'essaie.\n",
              "2363            I was naive.        Je fus crédule.\n",
              "7570         He is bankrupt.    Il est en faillite.\n",
              "6427          That's a fact.         C'est un fait.\n",
              "1651             Talk to me!           Parlez-moi !\n",
              "4164           Keep talking.   Continuez de parler.\n",
              "1231             I broke it.        Je l'ai cassée.\n",
              "9232         Tom is a judge.          Tom est juge."
            ],
            "text/html": [
              "\n",
              "  <div id=\"df-8da381e6-eb45-46bb-bd3b-11fd8ddba248\" class=\"colab-df-container\">\n",
              "    <div>\n",
              "<style scoped>\n",
              "    .dataframe tbody tr th:only-of-type {\n",
              "        vertical-align: middle;\n",
              "    }\n",
              "\n",
              "    .dataframe tbody tr th {\n",
              "        vertical-align: top;\n",
              "    }\n",
              "\n",
              "    .dataframe thead th {\n",
              "        text-align: right;\n",
              "    }\n",
              "</style>\n",
              "<table border=\"1\" class=\"dataframe\">\n",
              "  <thead>\n",
              "    <tr style=\"text-align: right;\">\n",
              "      <th></th>\n",
              "      <th>English words/sentences</th>\n",
              "      <th>French words/sentences</th>\n",
              "    </tr>\n",
              "  </thead>\n",
              "  <tbody>\n",
              "    <tr>\n",
              "      <th>1554</th>\n",
              "      <td>Let me die.</td>\n",
              "      <td>Laisse-moi mourir.</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>2087</th>\n",
              "      <td>He's a slob.</td>\n",
              "      <td>C'est un flemmard.</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>5470</th>\n",
              "      <td>I have to try.</td>\n",
              "      <td>Il faut que j'essaie.</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>2363</th>\n",
              "      <td>I was naive.</td>\n",
              "      <td>Je fus crédule.</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>7570</th>\n",
              "      <td>He is bankrupt.</td>\n",
              "      <td>Il est en faillite.</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>6427</th>\n",
              "      <td>That's a fact.</td>\n",
              "      <td>C'est un fait.</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>1651</th>\n",
              "      <td>Talk to me!</td>\n",
              "      <td>Parlez-moi !</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>4164</th>\n",
              "      <td>Keep talking.</td>\n",
              "      <td>Continuez de parler.</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>1231</th>\n",
              "      <td>I broke it.</td>\n",
              "      <td>Je l'ai cassée.</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>9232</th>\n",
              "      <td>Tom is a judge.</td>\n",
              "      <td>Tom est juge.</td>\n",
              "    </tr>\n",
              "  </tbody>\n",
              "</table>\n",
              "</div>\n",
              "    <div class=\"colab-df-buttons\">\n",
              "\n",
              "  <div class=\"colab-df-container\">\n",
              "    <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-8da381e6-eb45-46bb-bd3b-11fd8ddba248')\"\n",
              "            title=\"Convert this dataframe to an interactive table.\"\n",
              "            style=\"display:none;\">\n",
              "\n",
              "  <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\" viewBox=\"0 -960 960 960\">\n",
              "    <path d=\"M120-120v-720h720v720H120Zm60-500h600v-160H180v160Zm220 220h160v-160H400v160Zm0 220h160v-160H400v160ZM180-400h160v-160H180v160Zm440 0h160v-160H620v160ZM180-180h160v-160H180v160Zm440 0h160v-160H620v160Z\"/>\n",
              "  </svg>\n",
              "    </button>\n",
              "\n",
              "  <style>\n",
              "    .colab-df-container {\n",
              "      display:flex;\n",
              "      gap: 12px;\n",
              "    }\n",
              "\n",
              "    .colab-df-convert {\n",
              "      background-color: #E8F0FE;\n",
              "      border: none;\n",
              "      border-radius: 50%;\n",
              "      cursor: pointer;\n",
              "      display: none;\n",
              "      fill: #1967D2;\n",
              "      height: 32px;\n",
              "      padding: 0 0 0 0;\n",
              "      width: 32px;\n",
              "    }\n",
              "\n",
              "    .colab-df-convert:hover {\n",
              "      background-color: #E2EBFA;\n",
              "      box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
              "      fill: #174EA6;\n",
              "    }\n",
              "\n",
              "    .colab-df-buttons div {\n",
              "      margin-bottom: 4px;\n",
              "    }\n",
              "\n",
              "    [theme=dark] .colab-df-convert {\n",
              "      background-color: #3B4455;\n",
              "      fill: #D2E3FC;\n",
              "    }\n",
              "\n",
              "    [theme=dark] .colab-df-convert:hover {\n",
              "      background-color: #434B5C;\n",
              "      box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n",
              "      filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n",
              "      fill: #FFFFFF;\n",
              "    }\n",
              "  </style>\n",
              "\n",
              "    <script>\n",
              "      const buttonEl =\n",
              "        document.querySelector('#df-8da381e6-eb45-46bb-bd3b-11fd8ddba248 button.colab-df-convert');\n",
              "      buttonEl.style.display =\n",
              "        google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
              "\n",
              "      async function convertToInteractive(key) {\n",
              "        const element = document.querySelector('#df-8da381e6-eb45-46bb-bd3b-11fd8ddba248');\n",
              "        const dataTable =\n",
              "          await google.colab.kernel.invokeFunction('convertToInteractive',\n",
              "                                                    [key], {});\n",
              "        if (!dataTable) return;\n",
              "\n",
              "        const docLinkHtml = 'Like what you see? Visit the ' +\n",
              "          '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n",
              "          + ' to learn more about interactive tables.';\n",
              "        element.innerHTML = '';\n",
              "        dataTable['output_type'] = 'display_data';\n",
              "        await google.colab.output.renderOutput(dataTable, element);\n",
              "        const docLink = document.createElement('div');\n",
              "        docLink.innerHTML = docLinkHtml;\n",
              "        element.appendChild(docLink);\n",
              "      }\n",
              "    </script>\n",
              "  </div>\n",
              "\n",
              "\n",
              "<div id=\"df-79465a6b-a357-4d71-a8ce-b00949d6d5f5\">\n",
              "  <button class=\"colab-df-quickchart\" onclick=\"quickchart('df-79465a6b-a357-4d71-a8ce-b00949d6d5f5')\"\n",
              "            title=\"Suggest charts\"\n",
              "            style=\"display:none;\">\n",
              "\n",
              "<svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n",
              "     width=\"24px\">\n",
              "    <g>\n",
              "        <path d=\"M19 3H5c-1.1 0-2 .9-2 2v14c0 1.1.9 2 2 2h14c1.1 0 2-.9 2-2V5c0-1.1-.9-2-2-2zM9 17H7v-7h2v7zm4 0h-2V7h2v10zm4 0h-2v-4h2v4z\"/>\n",
              "    </g>\n",
              "</svg>\n",
              "  </button>\n",
              "\n",
              "<style>\n",
              "  .colab-df-quickchart {\n",
              "      --bg-color: #E8F0FE;\n",
              "      --fill-color: #1967D2;\n",
              "      --hover-bg-color: #E2EBFA;\n",
              "      --hover-fill-color: #174EA6;\n",
              "      --disabled-fill-color: #AAA;\n",
              "      --disabled-bg-color: #DDD;\n",
              "  }\n",
              "\n",
              "  [theme=dark] .colab-df-quickchart {\n",
              "      --bg-color: #3B4455;\n",
              "      --fill-color: #D2E3FC;\n",
              "      --hover-bg-color: #434B5C;\n",
              "      --hover-fill-color: #FFFFFF;\n",
              "      --disabled-bg-color: #3B4455;\n",
              "      --disabled-fill-color: #666;\n",
              "  }\n",
              "\n",
              "  .colab-df-quickchart {\n",
              "    background-color: var(--bg-color);\n",
              "    border: none;\n",
              "    border-radius: 50%;\n",
              "    cursor: pointer;\n",
              "    display: none;\n",
              "    fill: var(--fill-color);\n",
              "    height: 32px;\n",
              "    padding: 0;\n",
              "    width: 32px;\n",
              "  }\n",
              "\n",
              "  .colab-df-quickchart:hover {\n",
              "    background-color: var(--hover-bg-color);\n",
              "    box-shadow: 0 1px 2px rgba(60, 64, 67, 0.3), 0 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
              "    fill: var(--button-hover-fill-color);\n",
              "  }\n",
              "\n",
              "  .colab-df-quickchart-complete:disabled,\n",
              "  .colab-df-quickchart-complete:disabled:hover {\n",
              "    background-color: var(--disabled-bg-color);\n",
              "    fill: var(--disabled-fill-color);\n",
              "    box-shadow: none;\n",
              "  }\n",
              "\n",
              "  .colab-df-spinner {\n",
              "    border: 2px solid var(--fill-color);\n",
              "    border-color: transparent;\n",
              "    border-bottom-color: var(--fill-color);\n",
              "    animation:\n",
              "      spin 1s steps(1) infinite;\n",
              "  }\n",
              "\n",
              "  @keyframes spin {\n",
              "    0% {\n",
              "      border-color: transparent;\n",
              "      border-bottom-color: var(--fill-color);\n",
              "      border-left-color: var(--fill-color);\n",
              "    }\n",
              "    20% {\n",
              "      border-color: transparent;\n",
              "      border-left-color: var(--fill-color);\n",
              "      border-top-color: var(--fill-color);\n",
              "    }\n",
              "    30% {\n",
              "      border-color: transparent;\n",
              "      border-left-color: var(--fill-color);\n",
              "      border-top-color: var(--fill-color);\n",
              "      border-right-color: var(--fill-color);\n",
              "    }\n",
              "    40% {\n",
              "      border-color: transparent;\n",
              "      border-right-color: var(--fill-color);\n",
              "      border-top-color: var(--fill-color);\n",
              "    }\n",
              "    60% {\n",
              "      border-color: transparent;\n",
              "      border-right-color: var(--fill-color);\n",
              "    }\n",
              "    80% {\n",
              "      border-color: transparent;\n",
              "      border-right-color: var(--fill-color);\n",
              "      border-bottom-color: var(--fill-color);\n",
              "    }\n",
              "    90% {\n",
              "      border-color: transparent;\n",
              "      border-bottom-color: var(--fill-color);\n",
              "    }\n",
              "  }\n",
              "</style>\n",
              "\n",
              "  <script>\n",
              "    async function quickchart(key) {\n",
              "      const quickchartButtonEl =\n",
              "        document.querySelector('#' + key + ' button');\n",
              "      quickchartButtonEl.disabled = true;  // To prevent multiple clicks.\n",
              "      quickchartButtonEl.classList.add('colab-df-spinner');\n",
              "      try {\n",
              "        const charts = await google.colab.kernel.invokeFunction(\n",
              "            'suggestCharts', [key], {});\n",
              "      } catch (error) {\n",
              "        console.error('Error during call to suggestCharts:', error);\n",
              "      }\n",
              "      quickchartButtonEl.classList.remove('colab-df-spinner');\n",
              "      quickchartButtonEl.classList.add('colab-df-quickchart-complete');\n",
              "    }\n",
              "    (() => {\n",
              "      let quickchartButtonEl =\n",
              "        document.querySelector('#df-79465a6b-a357-4d71-a8ce-b00949d6d5f5 button');\n",
              "      quickchartButtonEl.style.display =\n",
              "        google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
              "    })();\n",
              "  </script>\n",
              "</div>\n",
              "\n",
              "    </div>\n",
              "  </div>\n"
            ],
            "application/vnd.google.colaboratory.intrinsic+json": {
              "type": "dataframe",
              "summary": "{\n  \"name\": \"dataset\",\n  \"rows\": 10,\n  \"fields\": [\n    {\n      \"column\": \"English words/sentences\",\n      \"properties\": {\n        \"dtype\": \"string\",\n        \"num_unique_values\": 10,\n        \"samples\": [\n          \"I broke it.\",\n          \"He's a slob.\",\n          \"That's a fact.\"\n        ],\n        \"semantic_type\": \"\",\n        \"description\": \"\"\n      }\n    },\n    {\n      \"column\": \"French words/sentences\",\n      \"properties\": {\n        \"dtype\": \"string\",\n        \"num_unique_values\": 10,\n        \"samples\": [\n          \"Je l'ai cass\\u00e9e.\",\n          \"C'est un flemmard.\",\n          \"C'est un fait.\"\n        ],\n        \"semantic_type\": \"\",\n        \"description\": \"\"\n      }\n    }\n  ]\n}"
            }
          },
          "metadata": {},
          "execution_count": 4
        }
      ],
      "source": [
        "# Shuffle the dataset\n",
        "dataset = dataset.sample(frac=1, random_state=0)\n",
        "dataset.iloc[1000:1010]"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 5,
      "id": "33f574a5",
      "metadata": {
        "id": "33f574a5"
      },
      "outputs": [],
      "source": [
        "def clean(string):\n",
        "    # Clean the string\n",
        "    string = string.replace(\"\\u202f\",\" \") # Replace no-break space with space\n",
        "    string = string.lower()\n",
        "\n",
        "    # Delete the punctuation and the numbers\n",
        "    for p in punctuation + \"«»\" + \"0123456789\":\n",
        "        string = string.replace(p,\" \")\n",
        "\n",
        "    string = re.sub('\\s+',' ', string)\n",
        "    string = string.strip()\n",
        "\n",
        "    return string\n",
        "\n",
        "# Clean the sentences\n",
        "dataset[\"English words/sentences\"] = dataset[\"English words/sentences\"].apply(lambda x: clean(x))\n",
        "dataset[\"French words/sentences\"] = dataset[\"French words/sentences\"].apply(lambda x: clean(x))\n",
        "\n",
        "# Select one part of the dataset\n",
        "dataset = dataset.values\n",
        "dataset = dataset[:total_sentences]\n",
        "\n",
        "# split into train/test\n",
        "train, test = dataset[:train_test_threshold], dataset[train_test_threshold:]\n",
        "\n",
        "# Define the name of the source and of the target\n",
        "# This will be used in the outputs of this notebook\n",
        "source_str, target_str = \"French\", \"English\"\n",
        "\n",
        "# The index in the numpy array of the source and of the target\n",
        "idx_src, idx_tar = 1, 0\n"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 6,
      "id": "ZdkiZ76oSt34",
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 363
        },
        "id": "ZdkiZ76oSt34",
        "outputId": "a3e74a90-561e-48b7-9959-50ee1d697bc0"
      },
      "outputs": [
        {
          "output_type": "execute_result",
          "data": {
            "text/plain": [
              "                0                     1\n",
              "0      let me die     laisse moi mourir\n",
              "1     he s a slob     c est un flemmard\n",
              "2   i have to try  il faut que j essaie\n",
              "3     i was naive        je fus crédule\n",
              "4  he is bankrupt    il est en faillite\n",
              "5   that s a fact         c est un fait\n",
              "6      talk to me            parlez moi\n",
              "7    keep talking   continuez de parler\n",
              "8      i broke it        je l ai cassée\n",
              "9  tom is a judge          tom est juge"
            ],
            "text/html": [
              "\n",
              "  <div id=\"df-96b52a81-6b1e-4e18-b942-f68ddef899c6\" class=\"colab-df-container\">\n",
              "    <div>\n",
              "<style scoped>\n",
              "    .dataframe tbody tr th:only-of-type {\n",
              "        vertical-align: middle;\n",
              "    }\n",
              "\n",
              "    .dataframe tbody tr th {\n",
              "        vertical-align: top;\n",
              "    }\n",
              "\n",
              "    .dataframe thead th {\n",
              "        text-align: right;\n",
              "    }\n",
              "</style>\n",
              "<table border=\"1\" class=\"dataframe\">\n",
              "  <thead>\n",
              "    <tr style=\"text-align: right;\">\n",
              "      <th></th>\n",
              "      <th>0</th>\n",
              "      <th>1</th>\n",
              "    </tr>\n",
              "  </thead>\n",
              "  <tbody>\n",
              "    <tr>\n",
              "      <th>0</th>\n",
              "      <td>let me die</td>\n",
              "      <td>laisse moi mourir</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>1</th>\n",
              "      <td>he s a slob</td>\n",
              "      <td>c est un flemmard</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>2</th>\n",
              "      <td>i have to try</td>\n",
              "      <td>il faut que j essaie</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>3</th>\n",
              "      <td>i was naive</td>\n",
              "      <td>je fus crédule</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>4</th>\n",
              "      <td>he is bankrupt</td>\n",
              "      <td>il est en faillite</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>5</th>\n",
              "      <td>that s a fact</td>\n",
              "      <td>c est un fait</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>6</th>\n",
              "      <td>talk to me</td>\n",
              "      <td>parlez moi</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>7</th>\n",
              "      <td>keep talking</td>\n",
              "      <td>continuez de parler</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>8</th>\n",
              "      <td>i broke it</td>\n",
              "      <td>je l ai cassée</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>9</th>\n",
              "      <td>tom is a judge</td>\n",
              "      <td>tom est juge</td>\n",
              "    </tr>\n",
              "  </tbody>\n",
              "</table>\n",
              "</div>\n",
              "    <div class=\"colab-df-buttons\">\n",
              "\n",
              "  <div class=\"colab-df-container\">\n",
              "    <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-96b52a81-6b1e-4e18-b942-f68ddef899c6')\"\n",
              "            title=\"Convert this dataframe to an interactive table.\"\n",
              "            style=\"display:none;\">\n",
              "\n",
              "  <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\" viewBox=\"0 -960 960 960\">\n",
              "    <path d=\"M120-120v-720h720v720H120Zm60-500h600v-160H180v160Zm220 220h160v-160H400v160Zm0 220h160v-160H400v160ZM180-400h160v-160H180v160Zm440 0h160v-160H620v160ZM180-180h160v-160H180v160Zm440 0h160v-160H620v160Z\"/>\n",
              "  </svg>\n",
              "    </button>\n",
              "\n",
              "  <style>\n",
              "    .colab-df-container {\n",
              "      display:flex;\n",
              "      gap: 12px;\n",
              "    }\n",
              "\n",
              "    .colab-df-convert {\n",
              "      background-color: #E8F0FE;\n",
              "      border: none;\n",
              "      border-radius: 50%;\n",
              "      cursor: pointer;\n",
              "      display: none;\n",
              "      fill: #1967D2;\n",
              "      height: 32px;\n",
              "      padding: 0 0 0 0;\n",
              "      width: 32px;\n",
              "    }\n",
              "\n",
              "    .colab-df-convert:hover {\n",
              "      background-color: #E2EBFA;\n",
              "      box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
              "      fill: #174EA6;\n",
              "    }\n",
              "\n",
              "    .colab-df-buttons div {\n",
              "      margin-bottom: 4px;\n",
              "    }\n",
              "\n",
              "    [theme=dark] .colab-df-convert {\n",
              "      background-color: #3B4455;\n",
              "      fill: #D2E3FC;\n",
              "    }\n",
              "\n",
              "    [theme=dark] .colab-df-convert:hover {\n",
              "      background-color: #434B5C;\n",
              "      box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n",
              "      filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n",
              "      fill: #FFFFFF;\n",
              "    }\n",
              "  </style>\n",
              "\n",
              "    <script>\n",
              "      const buttonEl =\n",
              "        document.querySelector('#df-96b52a81-6b1e-4e18-b942-f68ddef899c6 button.colab-df-convert');\n",
              "      buttonEl.style.display =\n",
              "        google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
              "\n",
              "      async function convertToInteractive(key) {\n",
              "        const element = document.querySelector('#df-96b52a81-6b1e-4e18-b942-f68ddef899c6');\n",
              "        const dataTable =\n",
              "          await google.colab.kernel.invokeFunction('convertToInteractive',\n",
              "                                                    [key], {});\n",
              "        if (!dataTable) return;\n",
              "\n",
              "        const docLinkHtml = 'Like what you see? Visit the ' +\n",
              "          '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n",
              "          + ' to learn more about interactive tables.';\n",
              "        element.innerHTML = '';\n",
              "        dataTable['output_type'] = 'display_data';\n",
              "        await google.colab.output.renderOutput(dataTable, element);\n",
              "        const docLink = document.createElement('div');\n",
              "        docLink.innerHTML = docLinkHtml;\n",
              "        element.appendChild(docLink);\n",
              "      }\n",
              "    </script>\n",
              "  </div>\n",
              "\n",
              "\n",
              "<div id=\"df-4f0181c4-ead5-43f5-bd23-48feb5d17177\">\n",
              "  <button class=\"colab-df-quickchart\" onclick=\"quickchart('df-4f0181c4-ead5-43f5-bd23-48feb5d17177')\"\n",
              "            title=\"Suggest charts\"\n",
              "            style=\"display:none;\">\n",
              "\n",
              "<svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n",
              "     width=\"24px\">\n",
              "    <g>\n",
              "        <path d=\"M19 3H5c-1.1 0-2 .9-2 2v14c0 1.1.9 2 2 2h14c1.1 0 2-.9 2-2V5c0-1.1-.9-2-2-2zM9 17H7v-7h2v7zm4 0h-2V7h2v10zm4 0h-2v-4h2v4z\"/>\n",
              "    </g>\n",
              "</svg>\n",
              "  </button>\n",
              "\n",
              "<style>\n",
              "  .colab-df-quickchart {\n",
              "      --bg-color: #E8F0FE;\n",
              "      --fill-color: #1967D2;\n",
              "      --hover-bg-color: #E2EBFA;\n",
              "      --hover-fill-color: #174EA6;\n",
              "      --disabled-fill-color: #AAA;\n",
              "      --disabled-bg-color: #DDD;\n",
              "  }\n",
              "\n",
              "  [theme=dark] .colab-df-quickchart {\n",
              "      --bg-color: #3B4455;\n",
              "      --fill-color: #D2E3FC;\n",
              "      --hover-bg-color: #434B5C;\n",
              "      --hover-fill-color: #FFFFFF;\n",
              "      --disabled-bg-color: #3B4455;\n",
              "      --disabled-fill-color: #666;\n",
              "  }\n",
              "\n",
              "  .colab-df-quickchart {\n",
              "    background-color: var(--bg-color);\n",
              "    border: none;\n",
              "    border-radius: 50%;\n",
              "    cursor: pointer;\n",
              "    display: none;\n",
              "    fill: var(--fill-color);\n",
              "    height: 32px;\n",
              "    padding: 0;\n",
              "    width: 32px;\n",
              "  }\n",
              "\n",
              "  .colab-df-quickchart:hover {\n",
              "    background-color: var(--hover-bg-color);\n",
              "    box-shadow: 0 1px 2px rgba(60, 64, 67, 0.3), 0 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
              "    fill: var(--button-hover-fill-color);\n",
              "  }\n",
              "\n",
              "  .colab-df-quickchart-complete:disabled,\n",
              "  .colab-df-quickchart-complete:disabled:hover {\n",
              "    background-color: var(--disabled-bg-color);\n",
              "    fill: var(--disabled-fill-color);\n",
              "    box-shadow: none;\n",
              "  }\n",
              "\n",
              "  .colab-df-spinner {\n",
              "    border: 2px solid var(--fill-color);\n",
              "    border-color: transparent;\n",
              "    border-bottom-color: var(--fill-color);\n",
              "    animation:\n",
              "      spin 1s steps(1) infinite;\n",
              "  }\n",
              "\n",
              "  @keyframes spin {\n",
              "    0% {\n",
              "      border-color: transparent;\n",
              "      border-bottom-color: var(--fill-color);\n",
              "      border-left-color: var(--fill-color);\n",
              "    }\n",
              "    20% {\n",
              "      border-color: transparent;\n",
              "      border-left-color: var(--fill-color);\n",
              "      border-top-color: var(--fill-color);\n",
              "    }\n",
              "    30% {\n",
              "      border-color: transparent;\n",
              "      border-left-color: var(--fill-color);\n",
              "      border-top-color: var(--fill-color);\n",
              "      border-right-color: var(--fill-color);\n",
              "    }\n",
              "    40% {\n",
              "      border-color: transparent;\n",
              "      border-right-color: var(--fill-color);\n",
              "      border-top-color: var(--fill-color);\n",
              "    }\n",
              "    60% {\n",
              "      border-color: transparent;\n",
              "      border-right-color: var(--fill-color);\n",
              "    }\n",
              "    80% {\n",
              "      border-color: transparent;\n",
              "      border-right-color: var(--fill-color);\n",
              "      border-bottom-color: var(--fill-color);\n",
              "    }\n",
              "    90% {\n",
              "      border-color: transparent;\n",
              "      border-bottom-color: var(--fill-color);\n",
              "    }\n",
              "  }\n",
              "</style>\n",
              "\n",
              "  <script>\n",
              "    async function quickchart(key) {\n",
              "      const quickchartButtonEl =\n",
              "        document.querySelector('#' + key + ' button');\n",
              "      quickchartButtonEl.disabled = true;  // To prevent multiple clicks.\n",
              "      quickchartButtonEl.classList.add('colab-df-spinner');\n",
              "      try {\n",
              "        const charts = await google.colab.kernel.invokeFunction(\n",
              "            'suggestCharts', [key], {});\n",
              "      } catch (error) {\n",
              "        console.error('Error during call to suggestCharts:', error);\n",
              "      }\n",
              "      quickchartButtonEl.classList.remove('colab-df-spinner');\n",
              "      quickchartButtonEl.classList.add('colab-df-quickchart-complete');\n",
              "    }\n",
              "    (() => {\n",
              "      let quickchartButtonEl =\n",
              "        document.querySelector('#df-4f0181c4-ead5-43f5-bd23-48feb5d17177 button');\n",
              "      quickchartButtonEl.style.display =\n",
              "        google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
              "    })();\n",
              "  </script>\n",
              "</div>\n",
              "\n",
              "    </div>\n",
              "  </div>\n"
            ],
            "application/vnd.google.colaboratory.intrinsic+json": {
              "type": "dataframe",
              "summary": "{\n  \"name\": \"pd\",\n  \"rows\": 10,\n  \"fields\": [\n    {\n      \"column\": 0,\n      \"properties\": {\n        \"dtype\": \"string\",\n        \"num_unique_values\": 10,\n        \"samples\": [\n          \"i broke it\",\n          \"he s a slob\",\n          \"that s a fact\"\n        ],\n        \"semantic_type\": \"\",\n        \"description\": \"\"\n      }\n    },\n    {\n      \"column\": 1,\n      \"properties\": {\n        \"dtype\": \"string\",\n        \"num_unique_values\": 10,\n        \"samples\": [\n          \"je l ai cass\\u00e9e\",\n          \"c est un flemmard\",\n          \"c est un fait\"\n        ],\n        \"semantic_type\": \"\",\n        \"description\": \"\"\n      }\n    }\n  ]\n}"
            }
          },
          "metadata": {},
          "execution_count": 6
        }
      ],
      "source": [
        "# Display the result after cleaning\n",
        "pd.DataFrame(dataset[1000:1010])"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 7,
      "id": "275b13e8",
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 116
        },
        "id": "275b13e8",
        "outputId": "3e708cc0-7e3d-426d-cf56-304df00e544b"
      },
      "outputs": [
        {
          "output_type": "display_data",
          "data": {
            "text/plain": [
              "<IPython.core.display.Markdown object>"
            ],
            "text/markdown": "\nTarget (English) Vocabulary Size: 2099"
          },
          "metadata": {}
        },
        {
          "output_type": "display_data",
          "data": {
            "text/plain": [
              "<IPython.core.display.Markdown object>"
            ],
            "text/markdown": "Target (English) Max Length: 5"
          },
          "metadata": {}
        },
        {
          "output_type": "display_data",
          "data": {
            "text/plain": [
              "<IPython.core.display.Markdown object>"
            ],
            "text/markdown": "\nSource (French) Vocabulary Size: 4039"
          },
          "metadata": {}
        },
        {
          "output_type": "display_data",
          "data": {
            "text/plain": [
              "<IPython.core.display.Markdown object>"
            ],
            "text/markdown": "Source (French) Max Length: 12\n"
          },
          "metadata": {}
        }
      ],
      "source": [
        "def create_tokenizer(lines):\n",
        "    # fit a tokenizer\n",
        "    tokenizer = Tokenizer()\n",
        "    tokenizer.fit_on_texts(lines)\n",
        "    return tokenizer\n",
        "\n",
        "def max_len(lines):\n",
        "    # max sentence length\n",
        "    return max(len(line.split()) for line in lines)\n",
        "\n",
        "def encode_sequences(tokenizer, length, lines):\n",
        "    # encode and pad sequences\n",
        "    X = tokenizer.texts_to_sequences(lines) # integer encode sequences\n",
        "    X = pad_sequences(X, maxlen=length, padding='post') # pad sequences with 0 values\n",
        "    return X\n",
        "\n",
        "def encode_output(sequences, vocab_size):\n",
        "    # one hot encode target sequence\n",
        "    ylist = list()\n",
        "    for sequence in sequences:\n",
        "        encoded = to_categorical(sequence, num_classes=vocab_size)\n",
        "        ylist.append(encoded)\n",
        "    y = np.array(ylist)\n",
        "    y = y.reshape(sequences.shape[0], sequences.shape[1], vocab_size)\n",
        "    return y\n",
        "\n",
        "# Prepare target tokenizer\n",
        "tar_tokenizer = create_tokenizer(dataset[:, idx_tar])\n",
        "tar_vocab_size = len(tar_tokenizer.word_index) + 1\n",
        "tar_length = max_len(dataset[:, idx_tar])\n",
        "printmd(f'\\nTarget ({target_str}) Vocabulary Size: {tar_vocab_size}')\n",
        "printmd(f'Target ({target_str}) Max Length: {tar_length}')\n",
        "\n",
        "# Prepare source tokenizer\n",
        "src_tokenizer = create_tokenizer(dataset[:, idx_src])\n",
        "src_vocab_size = len(src_tokenizer.word_index) + 1\n",
        "src_length = max_len(dataset[:, idx_src])\n",
        "printmd(f'\\nSource ({source_str}) Vocabulary Size: {src_vocab_size}')\n",
        "printmd(f'Source ({source_str}) Max Length: {src_length}\\n')\n",
        "\n",
        "# Prepare training data\n",
        "trainX = encode_sequences(src_tokenizer, src_length, train[:, idx_src])\n",
        "trainY = encode_sequences(tar_tokenizer, tar_length, train[:, idx_tar])\n",
        "trainY = encode_output(trainY, tar_vocab_size)\n",
        "\n",
        "# Prepare test data\n",
        "testX = encode_sequences(src_tokenizer, src_length, test[:, idx_src])\n",
        "testY = encode_sequences(tar_tokenizer, tar_length, test[:, idx_tar])\n",
        "testY = encode_output(testY, tar_vocab_size)"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 8,
      "id": "06fb69d9",
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "06fb69d9",
        "outputId": "ec5dffb6-3bb9-43f0-847d-f9719f1999d5"
      },
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "Epoch 1/20\n",
            "127/127 [==============================] - 32s 184ms/step - loss: 4.3580 - val_loss: 3.5034\n",
            "Epoch 2/20\n",
            "127/127 [==============================] - 20s 159ms/step - loss: 3.3180 - val_loss: 3.2966\n",
            "Epoch 3/20\n",
            "127/127 [==============================] - 29s 232ms/step - loss: 3.1166 - val_loss: 3.1305\n",
            "Epoch 4/20\n",
            "127/127 [==============================] - 22s 174ms/step - loss: 2.9387 - val_loss: 3.0357\n",
            "Epoch 5/20\n",
            "127/127 [==============================] - 20s 160ms/step - loss: 2.8170 - val_loss: 2.9482\n",
            "Epoch 6/20\n",
            "127/127 [==============================] - 22s 171ms/step - loss: 2.7020 - val_loss: 2.8696\n",
            "Epoch 7/20\n",
            "127/127 [==============================] - 21s 162ms/step - loss: 2.5850 - val_loss: 2.7787\n",
            "Epoch 8/20\n",
            "127/127 [==============================] - 22s 171ms/step - loss: 2.4499 - val_loss: 2.7062\n",
            "Epoch 9/20\n",
            "127/127 [==============================] - 22s 177ms/step - loss: 2.3151 - val_loss: 2.5752\n",
            "Epoch 10/20\n",
            "127/127 [==============================] - 21s 163ms/step - loss: 2.1780 - val_loss: 2.4899\n",
            "Epoch 11/20\n",
            "127/127 [==============================] - 22s 171ms/step - loss: 2.0454 - val_loss: 2.3923\n",
            "Epoch 12/20\n",
            "127/127 [==============================] - 20s 160ms/step - loss: 1.9261 - val_loss: 2.3220\n",
            "Epoch 13/20\n",
            "127/127 [==============================] - 22s 175ms/step - loss: 1.8146 - val_loss: 2.2600\n",
            "Epoch 14/20\n",
            "127/127 [==============================] - 20s 160ms/step - loss: 1.7014 - val_loss: 2.1994\n",
            "Epoch 15/20\n",
            "127/127 [==============================] - 22s 171ms/step - loss: 1.5957 - val_loss: 2.1526\n",
            "Epoch 16/20\n",
            "127/127 [==============================] - 20s 160ms/step - loss: 1.4959 - val_loss: 2.1011\n",
            "Epoch 17/20\n",
            "127/127 [==============================] - 22s 173ms/step - loss: 1.4070 - val_loss: 2.0468\n",
            "Epoch 18/20\n",
            "127/127 [==============================] - 20s 160ms/step - loss: 1.3184 - val_loss: 2.0204\n",
            "Epoch 19/20\n",
            "127/127 [==============================] - 22s 170ms/step - loss: 1.2317 - val_loss: 1.9782\n",
            "Epoch 20/20\n",
            "127/127 [==============================] - 20s 161ms/step - loss: 1.1525 - val_loss: 1.9759\n"
          ]
        }
      ],
      "source": [
        "def create_model(src_vocab, tar_vocab, src_timesteps, tar_timesteps, n_units):\n",
        "    # Create the model\n",
        "    model = Sequential()\n",
        "    model.add(Embedding(src_vocab_size, n_units, input_length=src_length, mask_zero=True))\n",
        "    model.add(LSTM(n_units))\n",
        "    model.add(RepeatVector(tar_timesteps))\n",
        "    model.add(LSTM(n_units, return_sequences=True))\n",
        "    model.add(TimeDistributed(Dense(tar_vocab, activation='softmax')))\n",
        "    return model\n",
        "\n",
        "# Create model\n",
        "model = create_model(src_vocab_size, tar_vocab_size, src_length, tar_length, 256)\n",
        "model.compile(optimizer='adam', loss='categorical_crossentropy')\n",
        "\n",
        "history = model.fit(trainX,\n",
        "          trainY,\n",
        "          epochs=20,\n",
        "          batch_size=64,\n",
        "          validation_split=0.1,\n",
        "          verbose=1,\n",
        "          callbacks=[\n",
        "                        EarlyStopping(\n",
        "                        monitor='val_loss',\n",
        "                        patience=10,\n",
        "                        restore_best_weights=True\n",
        "                    )\n",
        "            ])"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 9,
      "id": "6b90c23c",
      "metadata": {
        "id": "6b90c23c",
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 452
        },
        "outputId": "07f0bc72-13d7-4709-c8e4-ed4cd1bbfb85"
      },
      "outputs": [
        {
          "output_type": "display_data",
          "data": {
            "text/plain": [
              "<Figure size 640x480 with 1 Axes>"
            ],
            "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGzCAYAAAD9pBdvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABb3ElEQVR4nO3dd3hUZd7G8e+kF1IIkEZCTQghEHpXQAFpUuwoK2Lb1UVXbOuy71rQXWPfde0VbIhlpQgoIFKkKDVIDS0kAVJoSUhC2sx5/ziQGEkgCUkmk9yf65pLc+Y5M7/DYTI35zzFYhiGgYiIiIidONm7ABEREWncFEZERETErhRGRERExK4URkRERMSuFEZERETErhRGRERExK4URkRERMSuFEZERETErhRGRERExK4URkRERMSuFEZE5JLMmjULi8XCpk2b7F2KiDgohRERERGxK4URERERsSuFERGpdVu3bmXUqFH4+vrSpEkThg4dys8//1ymTVFRETNmzCAyMhIPDw+aNWvGZZddxrJly0rapKWlcfvttxMWFoa7uzshISGMHz+eQ4cO1fERiUhNcrF3ASLSsO3cuZPLL78cX19f/vrXv+Lq6so777zDkCFDWLVqFX379gXgqaeeIi4ujrvuuos+ffqQnZ3Npk2b2LJlC8OHDwfguuuuY+fOndx///20adOGjIwMli1bRnJyMm3atLHjUYrIpbAYhmHYuwgRcVyzZs3i9ttvZ+PGjfTq1eu856+55hoWL17M7t27adeuHQCpqalERUXRvXt3Vq1aBUC3bt0ICwtj4cKF5b5PZmYmTZs25cUXX+SRRx6pvQMSkTqn2zQiUmusVitLly5lwoQJJUEEICQkhFtuuYU1a9aQnZ0NgL+/Pzt37mTfvn3lvpanpydubm6sXLmSU6dO1Un9IlI3FEZEpNYcO3aMvLw8oqKiznsuOjoam81GSkoKAE8//TSZmZl06NCBLl268Oijj/Lrr7+WtHd3d+f555/nu+++IygoiEGDBvHCCy+QlpZWZ8cjIrVDYURE6oVBgwZx4MABPvzwQzp37sz7779Pjx49eP/990vaTJs2jb179xIXF4eHhwePP/440dHRbN261Y6Vi8ilUhgRkVrTokULvLy8SEhIOO+5PXv24OTkRHh4eMm2gIAAbr/9dj7//HNSUlKIjY3lqaeeKrNf+/btefjhh1m6dCk7duygsLCQl19+ubYPRURqkcKIiNQaZ2dnrrrqKubPn19m+G16ejqzZ8/msssuw9fXF4ATJ06U2bdJkyZERERQUFAAQF5eHvn5+WXatG/fHh8fn5I2IuKYNLRXRGrEhx9+yPfff3/e9qeeeoply5Zx2WWX8ec//xkXFxfeeecdCgoKeOGFF0raderUiSFDhtCzZ08CAgLYtGkTX3/9Nffddx8Ae/fuZejQodx444106tQJFxcX5s6dS3p6OhMnTqyz4xSRmqehvSJySc4N7a1ISkoKx44dY/r06axduxabzUbfvn3517/+Rf/+/Uva/etf/2LBggXs3buXgoICWrduza233sqjjz6Kq6srJ06c4Mknn2T58uWkpKTg4uJCx44defjhh7nhhhvq4lBFpJYojIiIiIhdqc+IiIiI2JXCiIiIiNiVwoiIiIjYlcKIiIiI2JXCiIiIiNjVJYWR5557DovFwrRp0ypsM2vWLCwWS5mHh4fHpbytiIiINCDVnvRs48aNvPPOO8TGxl60ra+vb5npoC0WS5Xey2azcfToUXx8fKq8r4iIiNiHYRicPn2a0NBQnJwqvv5RrTCSk5PDpEmTeO+99/jnP/950fYWi4Xg4ODqvBUAR48eLbN+hYiIiDiOlJQUwsLCKny+WmFk6tSpjBkzhmHDhlUqjOTk5NC6dWtsNhs9evTg2WefJSYmpsL2BQUFZdaaODcvW0pKSsk6FiIiIlK/ZWdnEx4ejo+PzwXbVTmMzJkzhy1btrBx48ZKtY+KiuLDDz8kNjaWrKwsXnrpJQYMGMDOnTsrTElxcXHMmDHjvO2+vr4KIyIiIg7mYl0sqjQdfEpKCr169WLZsmUlfUWGDBlCt27d+M9//lOp1ygqKiI6Opqbb76ZZ555ptw2v78yci5ZZWVlKYyIiIg4iOzsbPz8/C76/V2lKyObN28mIyODHj16lGyzWq2sXr2a119/nYKCApydnS/4Gq6urnTv3p39+/dX2Mbd3R13d/eqlCYiIiIOqkphZOjQoWzfvr3Mtttvv52OHTvy2GOPXTSIgBletm/fzujRo6tWqYiIiDRIVQojPj4+dO7cucw2b29vmjVrVrJ98uTJtGzZkri4OACefvpp+vXrR0REBJmZmbz44oskJSVx11131dAhiIhIQ2cYBsXFxVitVnuXIr/h7OyMi4vLJU+7Ue15RiqSnJxcZizxqVOnuPvuu0lLS6Np06b07NmTdevW0alTp5p+axERaYAKCwtJTU0lLy/P3qVIOby8vAgJCcHNza3ar1GlDqz2UtkOMCIi0rDYbDb27duHs7MzLVq0wM3NTZNf1hOGYVBYWMixY8ewWq1ERkaeN7FZrXRgFRERqUuFhYXYbDbCw8Px8vKydznyO56enri6upKUlERhYWG1l3vRQnkiIlLvXWgqcbGvmjg3OrsiIiJiVwojIiIiYlcKIyIiIrVgyJAhTJs2zd5lOASFEREREbGrRh1GPv05iQfmbOVo5hl7lyIiItJoNeow8sXGFObHH2VL8il7lyIiIpVkGAZ5hcV2eVR3aq5Tp04xefJkmjZtipeXF6NGjWLfvn0lzyclJTF27FiaNm2Kt7c3MTExLF68uGTfSZMm0aJFCzw9PYmMjGTmzJk18mdZXzTqeUa6t/Jn+5EstiZncnVsqL3LERGRSjhTZKXTE0vs8t67nh6Bl1vVvzqnTJnCvn37WLBgAb6+vjz22GOMHj2aXbt24erqytSpUyksLGT16tV4e3uza9cumjRpAsDjjz/Orl27+O6772jevDn79+/nzJmGdUW/0YeRj9cnEZ+Sae9SRESkgToXQtauXcuAAQMA+OyzzwgPD2fevHnccMMNJCcnc91119GlSxcA2rVrV7J/cnIy3bt3p1evXgC0adOmzo+htjXqMNItvCkA249kUVhsw82lUd+1EhFxCJ6uzux6eoTd3ruqdu/ejYuLC3379i3Z1qxZM6Kioti9ezcAf/nLX7j33ntZunQpw4YN47rrriM2NhaAe++9l+uuu44tW7Zw1VVXMWHChJJQ01A06m/fNs288PdypbDYxu7UbHuXIyIilWCxWPByc7HLo7bWxbnrrrs4ePAgt956K9u3b6dXr1689tprAIwaNYqkpCQefPBBjh49ytChQ3nkkUdqpQ57adRhxGKx0D3cH4Ct6sQqIiK1IDo6muLiYn755ZeSbSdOnCAhIaHMCvbh4eHcc889fPPNNzz88MO89957Jc+1aNGC2267jU8//ZT//Oc/vPvuu3V6DLWtUd+mAfNWzYqEY+o3IiIitSIyMpLx48dz991388477+Dj48Pf/vY3WrZsyfjx4wGYNm0ao0aNokOHDpw6dYoVK1YQHR0NwBNPPEHPnj2JiYmhoKCAhQsXljzXUDTqKyNgdmIF2KowIiIitWTmzJn07NmTq6++mv79+2MYBosXL8bV1RUAq9XK1KlTiY6OZuTIkXTo0IE333wTADc3N6ZPn05sbCyDBg3C2dmZOXPm2PNwapzFqO6g6TqUnZ2Nn58fWVlZ+Pr61uhrZ50pouuMpQBs/scwmjVxr9HXFxGR6svPzycxMZG2bdtWe3l6qV0XOkeV/f5u9FdG/DxdiQg0x3LrVo2IiEjda/RhBKDb2U6sCiMiIiJ1T2GE3/QbSc60ax0iIiKNkcII0P3s5GfbUjKx2ep9FxoREZEGRWEE6BDUBC83Z04XFHPgWI69yxEREWlUFEYAF2cnurT0A3SrRkREpK4pjJzVvZV5q2ZrimZiFRERqUsKI2epE6uIiIh9KIycdW6Nmr3pp8kpKLZvMSIiIo2IwshZgb4etPT3xGbAr4cz7V2OiIg0cm3atOE///lPpdpaLBbmzZtXq/XUJoWR3+imWzUiIiJ1TmHkN87dqlEYERERqTsKI79xrhNrfEomDrB+oIhI42QYUJhrn0clvxveffddQkNDsdlsZbaPHz+eO+64gwMHDjB+/HiCgoJo0qQJvXv35ocffqixP6Lt27dz5ZVX4unpSbNmzfjjH/9ITk7pPForV66kT58+eHt74+/vz8CBA0lKSgJg27ZtXHHFFfj4+ODr60vPnj3ZtGlTjdVWHpdafXUHExPqh6uzheM5BRw+dYbwAC97lyQiIr9XlAfPhtrnvf9+FNy8L9rshhtu4P7772fFihUMHToUgJMnT/L999+zePFicnJyGD16NP/6179wd3fn448/ZuzYsSQkJNCqVatLKjE3N5cRI0bQv39/Nm7cSEZGBnfddRf33Xcfs2bNori4mAkTJnD33Xfz+eefU1hYyIYNG7BYLABMmjSJ7t2789Zbb+Hs7Ex8fDyurq6XVNPFKIz8hoerM51CfNl2OIutKZkKIyIiUi1NmzZl1KhRzJ49uySMfP311zRv3pwrrrgCJycnunbtWtL+mWeeYe7cuSxYsID77rvvkt579uzZ5Ofn8/HHH+PtbQan119/nbFjx/L888/j6upKVlYWV199Ne3btwcgOjq6ZP/k5GQeffRROnbsCEBkZOQl1VMZCiO/071VUzOMJJ9iXFc7JW8REamYq5d5hcJe711JkyZN4u677+bNN9/E3d2dzz77jIkTJ+Lk5EROTg5PPfUUixYtIjU1leLiYs6cOUNycvIll7h79266du1aEkQABg4ciM1mIyEhgUGDBjFlyhRGjBjB8OHDGTZsGDfeeCMhISEAPPTQQ9x111188sknDBs2jBtuuKEktNQW9Rn5nW5nO7HGp2TatQ4REamAxWLeKrHH4+ytjMoYO3YshmGwaNEiUlJS+Omnn5g0aRIAjzzyCHPnzuXZZ5/lp59+Ij4+ni5dulBYWFhbf2plzJw5k/Xr1zNgwAC++OILOnTowM8//wzAU089xc6dOxkzZgw//vgjnTp1Yu7cubVaj8LI75zrxLrzSDYFxVb7FiMiIg7Lw8ODa6+9ls8++4zPP/+cqKgoevToAcDatWuZMmUK11xzDV26dCE4OJhDhw7VyPtGR0ezbds2cnNzS7atXbsWJycnoqKiSrZ1796d6dOns27dOjp37szs2bNLnuvQoQMPPvggS5cu5dprr2XmzJk1UltFFEZ+p1WAFwHebhRabew6mm3vckRExIFNmjSJRYsW8eGHH5ZcFQGzH8Y333xDfHw827Zt45Zbbjlv5M2lvKeHhwe33XYbO3bsYMWKFdx///3ceuutBAUFkZiYyPTp01m/fj1JSUksXbqUffv2ER0dzZkzZ7jvvvtYuXIlSUlJrF27lo0bN5bpU1Ib1GfkdywWC93D/Vm+J4OtyZklC+iJiIhU1ZVXXklAQAAJCQnccsstJdtfeeUV7rjjDgYMGEDz5s157LHHyM6umX8Ae3l5sWTJEh544AF69+6Nl5cX1113Ha+88krJ83v27OGjjz7ixIkThISEMHXqVP70pz9RXFzMiRMnmDx5Munp6TRv3pxrr72WGTNm1EhtFbEYDjChRnZ2Nn5+fmRlZeHr61vr7/fa8n28vGwv47qG8t+bu9f6+4mISPny8/NJTEykbdu2eHh42LscKceFzlFlv791m6Yc566GbE05ZedKREREGj6FkXLEhvthsUDKyTMczymwdzkiItKIffbZZzRp0qTcR0xMjL3LqxHqM1IOXw9XIlo0YV9GDvHJmQzrFGTvkkREpJEaN24cffv2Lfe52p4Zta4ojFSgeyt/9mXksDXllMKIiIjYjY+PDz4+PvYuo1Zd0m2a5557DovFwrRp0y7Y7quvvqJjx454eHjQpUsXFi9efClvWydK+o1oBV8REbtzgLEWjVZNnJtqh5GNGzfyzjvvEBsbe8F269at4+abb+bOO+9k69atTJgwgQkTJrBjx47qvnWdODf52baUTKw2fQhEROzh3G2IvLw8O1ciFTl3bi7lllG1btPk5OQwadIk3nvvPf75z39esO2rr77KyJEjefTRRwFzMaBly5bx+uuv8/bbb1fn7etEZKAP3m7O5BZa2Z+RQ1Rww75EJiJSHzk7O+Pv709GRgZgzpFhqcKU7FJ7DMMgLy+PjIwM/P39cXZ2rvZrVSuMTJ06lTFjxjBs2LCLhpH169fz0EMPldk2YsQI5s2bV+E+BQUFFBSUjmKpqYlgqsLZyUJsmD/rD55ga/IphRERETsJDg4GKAkkUr/4+/uXnKPqqnIYmTNnDlu2bGHjxo2Vap+WlkZQUNkOoEFBQaSlpVW4T1xcXK3P9lYZ3VudCyOZTOzTyt7liIg0ShaLhZCQEAIDAykqKrJ3OfIbrq6ul3RF5JwqhZGUlBQeeOABli1bVqsz4U2fPr3M1ZTs7GzCw8Nr7f0qosnPRETqD2dn5xr54pP6p0phZPPmzWRkZJSsOghgtVpZvXo1r7/+OgUFBef9RQkODiY9Pb3MtvT09Ate0nF3d8fd3b0qpdWKbuH+AOzLyOF0fhE+Hg1jPLeIiEh9UqXRNEOHDmX79u3Ex8eXPHr16sWkSZOIj48vN7H279+f5cuXl9m2bNky+vfvf2mV14EWPu6ENfXEMODXw1n2LkdERKRBqtKVER8fHzp37lxmm7e3N82aNSvZPnnyZFq2bElcXBwADzzwAIMHD+bll19mzJgxzJkzh02bNvHuu+/W0CHUru6tmnL41Bm2Jp9iYERze5cjIiLS4NT42jTJycmkpqaW/DxgwABmz57Nu+++S9euXfn666+ZN2/eeaGmvjp3q0aTn4mIiNQOi+EA09pVdgni2rAl+RTXvrmOZt5ubPrHMI1vFxERqaTKfn9r1d6LiAn1xc3ZiRO5haScPGPvckRERBochZGLcHdxplOomeY0xFdERKTmKYxUgvqNiIiI1B6FkUo4t2je1pRMu9YhIiLSECmMVEKPszOx7jqaRX6R1c7ViIiINCwKI5UQ1tST5k3cKLIa7Dxa94v2iYiINGQKI5VgsVhK+o3E61aNiIhIjVIYqaSSRfOSNaJGRESkJimMVFJ3jagRERGpFQojldQlzA+LBY5kniHjdL69yxEREWkwFEYqycfDlQ6BPgDE6+qIiIhIjVEYqQLNNyIiIlLzFEaqoCSMqBOriIhIjVEYqYJu4eaIml8PZ2G11fvFjkVERByCwkgVRAQ2oYm7C3mFVvamn7Z3OSIiIg2CwkgVODtZ6BruB2iIr4iISE1RGKmi7uGa/ExERKQmKYxUkaaFFxERqVkKI1XU7eyImn0ZOWSdKbJvMSIiIg2AwkgVNW/iTqsALwB+PZxp32JEREQaAIWRaiidbyTTrnWIiIg0BAoj1aB+IyIiIjVHYaQaurcqHVFjGJr8TERE5FIojFRDpxBf3FycOJVXRNKJPHuXIyIi4tAURqrBzcWJmFBfALamaL4RERGRS6EwUk3nJj+LVydWERGRS6IwUk0lI2rUiVVEROSSKIxU07kwsutoNvlFVvsWIyIi4sAURqqppb8nzZu4U2wz2HEky97liIiIOCyFkWqyWCwlV0c034iIiEj1KYxcAs3EKiIicukURi7BuRE1W5M1vFdERKS6FEYuQWyYH04WOJqVT3p2vr3LERERcUgKI5fA292FDkE+gG7ViIiIVJfCyCUqWadGM7GKiIhUi8LIJep+dgVfXRkRERGpHoWRS3RuRM32w1kUW232LUZERMQBKYxcovYtmuDj7sKZIisJ6aftXY6IiIjDURi5RE5OFrppvhEREZFqUxipAd3Ub0RERKTaFEZqQOm08BpRIyIiUlUKIzWg29mZWA8cyyUrr8jO1YiIiDiWKoWRt956i9jYWHx9ffH19aV///589913FbafNWsWFoulzMPDw+OSi65vArzdaNPMC4D4w5n2LUZERMTBVCmMhIWF8dxzz7F582Y2bdrElVdeyfjx49m5c2eF+/j6+pKamlrySEpKuuSia4y1CI4l1MhLlfYb0a0aERGRqnCpSuOxY8eW+flf//oXb731Fj///DMxMTHl7mOxWAgODq5SUQUFBRQUFJT8nJ2dXaX9K8Vmg/lTYc8imDgb2g2+pJfr3qop8+KPEp+SWTP1iYiINBLV7jNitVqZM2cOubm59O/fv8J2OTk5tG7dmvDw8IteRTknLi4OPz+/kkd4eHh1y6xYcT6cToXCHPjsetg575JervtvhvcahnHp9YmIiDQSVQ4j27dvp0mTJri7u3PPPfcwd+5cOnXqVG7bqKgoPvzwQ+bPn8+nn36KzWZjwIABHD58+ILvMX36dLKyskoeKSkpVS3z4ty8YNLX0Gk8WAvhqymw8YNqv1zHYF/cXJzIOlNE4vHcmqtTRESkgbMYVfxnfGFhIcnJyWRlZfH111/z/vvvs2rVqgoDyW8VFRURHR3NzTffzDPPPFPp98zOzsbPz4+srCx8fX2rUu7F2ayw6GHYPNP8ecjfYfBfwWKp8ktd99Y6Nied4uUbunJdz7CarVNERMTBVPb7u8pXRtzc3IiIiKBnz57ExcXRtWtXXn311Urt6+rqSvfu3dm/f39V37b2ODnD1f+GwY+ZP698FhY/avYpqaJzi+ap34iIiEjlXfI8IzabrUxn0wuxWq1s376dkJCQS33bmmWxwBV/h1EvAhbY+B78704oLqzSy3RvZc43slWTn4mIiFRalUbTTJ8+nVGjRtGqVStOnz7N7NmzWblyJUuWLAFg8uTJtGzZkri4OACefvpp+vXrR0REBJmZmbz44oskJSVx11131fyR1IS+fwSvAJh7D+z8Bs6cgps+AXefSu1+bo2a3amnOVNoxdPNuRaLFRERaRiqFEYyMjKYPHkyqamp+Pn5ERsby5IlSxg+fDgAycnJODmVXmw5deoUd999N2lpaTRt2pSePXuybt26SvUvsZsu15uBZM4f4OAK+GgcTPoKvJtfdNdQPw8CfdzJOF3AjqNZ9G4TUAcFi4iIOLYqd2C1h1rtwFqRI5vh0+vhzEloFgm3fgP+rS66258+2cSSnen8fXRH/jiofR0UKiIiUj/VWgfWRqNlT7hjCfiFw4l98MEIyNh90d1K+o1oBV8REZFKURi5kBYdzEDSIhpOH4UPR0LyLxfcpXRa+Mzar09ERKQBUBi5GL+WcPtiCOsD+Znw8XjYu7TC5rFhfjhZIC07n9SsM3VXp4iIiINSGKkMrwCYPB8ir4LiM/D5RNg2p/ymbi50DDbvi8Xr6oiIiMhFKYxUlpuXuaBe7EQwrDD3T7Du9XKblqxTo8nPRERELkphpCqcXWHCW9D/PvPnpf8Hy56E3w1IKu03osnPRERELkZhpKqcnOCqf8KwGebPa/8DC+4Da3FJk3MjarYfyaLIWvVp5UVERBoThZHqsFjgsmkw7nWwOMHWT+HLW6HI7LDarrk3vh4u5BfZSEg7bd9aRURE6jmFkUvR41a46TNw8YCExfDJtXAmEycnC111q0ZERKRSFEYuVcfR8IdvwN0PktfBrDFwOk2Tn4mIiFSSwkhNaDPQnIukSRCk74APrmJA00zAHFHjADPui4iI2I3CSE0J7gx3LoWAdpCZRJ8fbyHW+RCJx3OZ8e0urDYFEhERkfIojNSkpm3M6eODY3HKO8bXHv+iv9NOZq07xH2zt5BfZLV3hSIiIvWOwkhNaxIIUxZBm8txs+bymfvzTHX9lu93HGXyBxvIzCu0d4UiIiL1isJIbfDwhUlfQ+frcTKKedT5cz7zeIGDhxK5/u31HMnUmjUiIiLnKIzUFlcPuO59GPtfcPFkAL+yxGM6wcfXc+2ba9mdmm3vCkVEROoFhZHaZLFAz9vgjyugRTTNyORjt+e4Le8jbnn7J9btP27vCkVEROxOYaQuBEabgaTXHThh8GeXBXxgPMHfZy5ifvwRe1cnIiJiVwojdcXVE67+N9zwEYa7Lz2c9rPA5W98/+U7vLv6gOYiERGRRkthpK7FTMByzxqMlr3xteTxltureC99lGcXbMWmuUhERKQRUhixh6atsdzxHVz2IAYWJrks57rNk3l21jeai0RERBodhRF7cXaFYU9hufUb8t2b09EphYeT7mHW6zPIytVcJCIi0ngojNhb+yvxuH89p0Iux9NSyD1Zr7L139eQmp5u78pERETqhMJIfdAkkKZ3LyC9798pxpkhxWuwvXUZifGr7F2ZiIhIrVMYqS+cnAga9Rgnb/qWVEsgLckgbO41HFrwLNhs9q5ORESk1iiM1DOB0QPxun896z0ux9Vipc2W58l4eyzkHLN3aSIiIrVCYaQe8gtoTveH5vFZ4EPkG64EZqwh77/94MAKe5cmIiJS4xRG6ikPNxcm3vMEH3SaSYItDK/C4xifXIPxw9NgLbJ3eSIiIjVGYaQec3ay8Ocbr2bNFV/wWfFQLBhY1ryM7cNRkJls7/JERERqhMJIPWexWLjzis40uf417i9+gGzDC6cjGzHeugx2zbd3eSIiIpdMYcRBjO/WkolT/sINvMBWWwSWgiz4cjJ88QdI/Am0to2IiDgoi+EAK7RlZ2fj5+dHVlYWvr6+9i7HrnYdzebOD9dxa/5n/NllQekTLaKhz10QexO4+9ivQBERkbMq+/2tMOKADp/KY8rMjTgd282dbsu4zmUdLtY880k3H+h2M/S+C1pE2bdQERFp1BRGGrjMvEKmzt7C2v0n8CGPlyJ3clXut1hO7i9t1HYQ9PkjdBgFzi72K1ZERBolhZFGoNhq48WlCbyz6iAA/dv68/bAHPy2fwR7vwPj7MytvmHQawr0mAJNWtitXhERaVwURhqR77an8shX28gttBLs68Gbf+hBD9/TsGkmbPkI8k6YDZ1cIWaCebUkrDdYLHatW0REGjaFkUZmf8Zp/vTJZg4cy8XV2cKTY2OY1LcVluIC2DUPNrwHRzaV7hAcC33uhs7Xg5uX3eoWEZGGS2GkEcopKOaRL7fx/c40AG7oGcYzEzrj4epsNji6FTa8Dzu+huJ8c5uHP3T/A/S6A5q1t0/hIiLSICmMNFKGYfD2qoO8uGQPNgM6t/TlrUk9CQ/4zdWPvJOw9RPY+AFkJpVujxhuXi2JGAZOznVfvIiINCgKI43c2v3Huf/zrZzMLcTfy5X/TuzOoA6/67xqs8L+H2DDu+Z/z/FvDb3vhO63gldA3RYuIiINhsKIcCTzDPd+uplfD2dhscAjV0Vx7+D2ODmV03H1xAHY9KF5xSQ/y9zm4gHR46DHrdD6MnDShL0iIlJ5lf3+rtK3y1tvvUVsbCy+vr74+vrSv39/vvvuuwvu89VXX9GxY0c8PDzo0qULixcvrspbyiVo6e/Jl3/qz8Te4RgGvLgkgXs+3czp/HJW/W3WHkb8Cx7aA+Neg+AuZr+S7V/CR2Phte6w+kXIPlr3ByIiIg1ala6MfPvttzg7OxMZGYlhGHz00Ue8+OKLbN26lZiYmPPar1u3jkGDBhEXF8fVV1/N7Nmzef7559myZQudO3eudJG6MnLp5mxI5on5Oym02mjX3Jt3bu1JZNAFpo03DDiyBbZ+DNv/B4Wnze0WJ7NPSfdbocNIcHGrmwMQERGHU2e3aQICAnjxxRe58847z3vupptuIjc3l4ULF5Zs69evH926dePtt9+u9HsojNSM+JRM/vzpZo5m5ePl5syL13dlTGzIxXcszDVXCN7yCSSvK93u1Ry6ToQekzX1vIiInKdWbtP8ltVqZc6cOeTm5tK/f/9y26xfv55hw4aV2TZixAjWr19/wdcuKCggOzu7zEMuXbdwf769/zIGtG9GXqGVqbO38Ozi3RRbbRfe0c0but0Cd3wH922GgdOgSRDkHYf1r8MbfeD94bDlYyjIqZNjERGRhqPKYWT79u00adIEd3d37rnnHubOnUunTp3KbZuWlkZQUFCZbUFBQaSlpV3wPeLi4vDz8yt5hIeHV7VMqUCzJu58fEcf/jS4HQDvrj7IrR9s4HhOQeVeoHkEDJ8BD+6EiZ9D1GiwOMPhDbDgfnipA8yfCsm/mLd6RERELqLKYSQqKor4+Hh++eUX7r33Xm677TZ27dpVo0VNnz6drKyskkdKSkqNvn5j5+LsxPRR0bw1qQfebs6sP3iCsa+tYWvyqcq/iLMrdBwNN38OD+2CYU9BQHsoyoWtn8KHV8EbfWHtfyHnWK0di4iIOL4qhxE3NzciIiLo2bMncXFxdO3alVdffbXctsHBwaSnp5fZlp6eTnBw8AXfw93dvWTEzrmH1LxRXUKYf99A2rfwJjUrn5ve+ZnPfkmiyt2IfILhsgfh/s1w+3fQ9RZw9YLjCbDscXilI8yZBHuXgLW4dg5GREQc1iVPHGGz2SgoKP8Sf//+/Vm+fHmZbcuWLauwj4nUvYhAH+ZNHcjImGAKrTb+b+4OHvvfr+QXWav+YhYLtB4A17wFDyfA1f+Blj3BVgx7FsLsG+E/nWH503DyYI0fi4iIOKYqjaaZPn06o0aNolWrVpw+fbpkqO6SJUsYPnw4kydPpmXLlsTFxQHm0N7Bgwfz3HPPMWbMGObMmcOzzz6rob310O+nke/S0o+3/tCDsKY1sIhe+i5zMrVtc+DMydLtrS+DLtdDp/Ga6VVEpAGqlaG9d955J8uXLyc1NRU/Pz9iY2N57LHHGD58OABDhgyhTZs2zJo1q2Sfr776in/84x8cOnSIyMhIXnjhBUaPHl0rByOX7vfTyP/f6Giu7RGGc3mztlZVcQEkLDaHCB/4ETj7V8/JBdoPNYNJ1Chwv8D8JyIi4jA0HbxU22+nkQfoENSEx0Z25MqOgVgsNRBKADJTzNWDt/8P0reXbnfxhA4jzGASMRxcPWrm/UREpM4pjMglKSi28vG6JF5fsZ+sM+b08b3bNOVvozrSs3UN31I5lgA7/gfbv4aTB0q3u/tC9FjofC20HQLOLjX7viIiUqsURqRGZJ0p4u1VB5i5NpH8InNytOGdgvjriKgLTydfHYYBqfFmKNk5F7KPlD7n1RxiJkDn6yG8rxbtExFxAAojUqPSsvJ5dflevtx0GKvNwMkC1/cMY9qwDoT6e9b8G9pskPKzGUx2zYO8E6XP+YZB52vMYBLS1RzFIyIi9Y7CiNSK/Rk5vLQkge93mrPourk4cfuANtw7pD3+XrW0aJ61CA6uMvuY7F5YumgfQLMIM5R0uR6aR9bO+4uISLUojEit2pJ8iue/28MvieZQXV8PF+4dEsHtA9vg4epce29cdAb2LTODyd4lUJxf+lxwFzOYdL4O/LWEgIiIvSmMSK0zDIOVe4/x/Hd72JNmXq0I9vVg2rBIru8ZhotzLffryM82hwpv/xoOrjAnVzsnvB/E3ghdbgAP/Z0REbEHhRGpM1abwfz4I7y8dC9HMs8A0L6FN4+O6MiImKCaGw58IbknYPd8c6hw0lpK5jBx9YYu10HP26Flj9qvQ0RESiiMSJ0rKLby6c/JvP7jPk7lmcOBu7fy528jO9K3XbO6KyT7qDlUeMvHcHxv6faQrmYo6XK9JlYTEakDCiNiN9n5Rby3+iDv/5TImbNr3FwR1YK/juxIdEgdnj/DgKR1sHkm7JoP1kJzu1sTM5D0vB1Cu9VdPSIijYzCiNhdRnY+//1xH3M2pFBsM7BY4JpuLXlweAfCA2pgzZuqyD0B22bD5llwYn/p9tDuZijpfB24N6nbmkREGjiFEak3Eo/n8tLSBBb9mgqAm7MTf+jXmvuujCDAu5aGA1fEMODQmrNXSxaAzbydhJuP2eG15xQIia3bmkREGiiFEal3fj2cyXPf7WHdAXMCsybuLtwxsA13Xt4OP0/Xui8o9zjEf2ZeLTl5sHR7y55nr5ZcC27edV+XiEgDoTAi9ZJhGPy07zjPf7+HnUezAfDxcOHuy9tx+8A2+HjYIZTYbHDoJ/Nqye6FpVdL3H0h9ibzaklw57qvS0TEwSmMSL1msxks2ZnGv3/Yy970HAD8vVy5+/J2TBnQBm93Oy2Kl3MM4j81r5acOlS6Pay3ebUk5hpwq+P+LiIiDkphRByCzWawaHsq//lhLweO5QIQ4O3Gnwa149b+rfFys1MosdkgcZV5tWTPotIJ1Tz8IHYi9LodAqPtU5uIiINQGBGHYrUZfLvtKK8u30ficTOUNG/ixj2D2/OHfq1rd4r5izmdfvZqyUeQmVS6PTgWosdB9FhoEaUF+0REfkdhRBxSsdXG3K1H+O+P+0g5ac7mGujjztQrIripd7h9Q4nNZk47v3km7FkMhrX0uWaRZiiJHmsOF1YwERFRGBHHVmS18b/Nh3ntx/0lU8yH+Hkw9YoIbuwVjptLLa97czG5J8x1cXZ/awaUcxOqAfiGlQaTVv3AyY4BSkTEjhRGpEEoLLbx5aYUXv9xP2nZ5gq9Lf09uf/KCK7rGYZrbS/GVxn52bBvqRlM9i2DotzS57yaQ8cx5u2ctoPApY7nVRERsSOFEWlQ8ouszNmQzBsrD3DsdAEArQK8+MvQSCZ0C639FYIrq+gMHFhhBpOExZCfWfqcux90GGFeMYkYqjlMRKTBUxiRBim/yMqnPyfx9qoDHM8xb420be7NA0MjGds1FGenetRXw1pkzva6+1vYsxBy0kufc/E0A0n0ODOgePrbrUwRkdqiMCINWl5hMZ+sN0PJuRWC27fwZtqwDozpEoJTfQolYHZ+PbwRdi8wH5nJpc85uUDbweYVk45joEmg/eoUEalBCiPSKOQUFPPRukO8u/ogWWfMUBIV5MO0YZGMiAmuf6EEzPVx0rabV0x2fwvHdv/mSQu06g+dxkH3W7V4n4g4NIURaVSy84uYtfYQ7/10kNP55gRlnUJ8efiqDlzZMRBLfR5qe3xfaTA5uqV0u08IDJsBXW4Ap3rSJ0ZEpAoURqRRysor4oM1B/lw7SFyCsxQ0i3cn0euimJgRLP6HUoAMlPM/iW/vF06HX1Ybxj5PIT1tGtpIiJVpTAijdqp3ELeWX2QWesSyS+yAdC3bQCPjoiiV5sAO1dXCcUFsP4NWP1S6VDhrrfAsCfBJ9i+tYmIVJLCiAiQcTqfN1ccYPYvyRRazVAyuEMLHr6qA7Fh/vYtrjKyU2H507BttvmzWxO4/GHo92dw9bBvbSIiF6EwIvIbRzPP8NqP+/lqUwrFNvOv/IiYIB4aHkVUsI+dq6uEw5vhu7/CkU3mz03bwFX/Mkff1PdbTyLSaCmMiJQj6UQur/6wj7nxRzAM83t8bGwo04ZF0q5FPR+5YrPB9q/ghyfhdKq5re1gGPkcBHWyb20iIuVQGBG5gH3pp/n3D3tZvD0NAGcnC9f1aMn9V0YSHuBl5+ouoiAH1vwb1r0G1gKwOEGvO+GKv4OXA/SHEZFGQ2FEpBJ2HMni38v2snxPBgCuzhYm9m7FfVdGEORbz/tknDoESx83J1ED8GwKV/wf9LwdnF3sWpqICCiMiFTJ5qRTvLIsgbX7TwDg7uLE5P6tuWdwe5o1cbdzdReRuBq++xtk7DR/bhENo56DdkPsWpaIiMKISDWsO3Ccl5fuZXPSKQC83Jy5Y2Bb7r68HX5ernau7gKsxbDlI/jxn3DmpLmt49Vw1TMQ0M6+tYlIo6UwIlJNhmGwcu8xXl6awI4j2QD4erjwx0HtmDKwLU3c6/EtkDOnYOXzsOFdMKzg7Ab9p5rDgd0dYNSQiDQoCiMil8gwDJbsTOeVZQnsTc8BIMDbjXsHt+fW/q3xcHW2c4UXkLEHlkyHAz+aPzcJgmFPQexETS0vInVGYUSkhlhtBgt/Pcq/l+3l0Ik8AAJ93HloeAdu7BVePxfjA3NBvr1LzFBy8qC5LbQHjHoBwnvbtzYRaRQURkRqWLHVxjdbjvDq8n0cyTwDQNdwf54ZH1O/Z3MtLjDXuln1IhSeNrfFXAu974RWA3SlRERqjcKISC0pKLby8bokXl2+j5yCYiwWmNg7nEdHdCTA283e5VXsdDr8+DRs/Qw4+7Fv2sZc86brRGja2p7ViUgDpDAiUssysvN5dvFu5sUfBcDfy5VHrori5j6tcK6vt24AUrfBxg9gxzelV0oA2g6CbpMgehy41fOJ30TEISiMiNSRXw6e4MkFO9mTZn6xd27py9PjO9OjVVM7V3YRhXmwZyFs/dScq+Tc1RI3H4iZAN3/AOF9tfaNiFSbwohIHSq22vjk5yReWbqX0wXFANzQM4zHRnWkeX2fNA0gMxm2zYH4z8yZXc8JaAfdboGuN4NfmN3KExHHVNnv7yr1XIuLi6N37974+PgQGBjIhAkTSEhIuOA+s2bNwmKxlHl4eNTzabZFqsjF2YnbB7blx0eGcH1P80v7q82HufKllXy07hDFVpudK7wI/1Yw+K/wl3iYshi6/QFcvc1ROD/+E/7dGT6eANu/hqIz9q5WRBqYKl0ZGTlyJBMnTqR3794UFxfz97//nR07drBr1y68vb3L3WfWrFk88MADZUKLxWIhKCio0kXqyog4ms1JJ3li/k52HjUnTYsO8eWZ8TH0auNAC9kV5Jjr3mz9DJLWlG5394PO15r9S8J66TaOiFSoTm7THDt2jMDAQFatWsWgQYPKbTNr1iymTZtGZmZmdd9GYUQcktVmMPuXJF5ckkB2vnnr5toeLfnbqI4E+jjY1cGTibDtc4j/HLKSS7c372DexomdCL4h9qtPROqlWrlN83tZWVkABARc+F97OTk5tG7dmvDwcMaPH8/OnTsv2L6goIDs7OwyDxFH4+xk4db+bVjxyBAm9g7HYoFvthxh6Eur+GBNYv2/dfNbAW3hir/DA9tg8gIzfLh4wvG98MNT8O9O8On15gidonx7VysiDqbaV0ZsNhvjxo0jMzOTNWvWVNhu/fr17Nu3j9jYWLKysnjppZdYvXo1O3fuJCys/A5xTz31FDNmzDhvu66MiCOLT8nkifk7+PWwGeKjgnyYMT6Gfu2a2bmyasrPhl3zIH42JK8v3e7hb85b0ueP0Ky9vaoTkXqg1m/T3HvvvXz33XesWbOmwlBRnqKiIqKjo7n55pt55plnym1TUFBAQUFByc/Z2dmEh4crjIjDs9oMvtyUwgvf7+FUXhEA47qG8n9jognydbBbN7914oAZSrZ9DtlHzm60QORV0PdP0P5K9S0RaYRqNYzcd999zJ8/n9WrV9O2bdsqF3fDDTfg4uLC559/Xqn26jMiDc2p3EJeWprA7A3JGAZ4uznzwLBIbh/YFldnB56e3WaFAyvMVYP3LSnd3ryDGUpiJ4J7E/vVJyJ1qlbCiGEY3H///cydO5eVK1cSGRlZ5cKsVisxMTGMHj2aV155pVL7KIxIQ7X9cBaPz99BfEomABGBTZgxLoaBEc3tW1hNOHHADCVbPyud6dXdD3rcCn3uNqeiF5EGrVbCyJ///Gdmz57N/PnziYqKKtnu5+eHp6cnAJMnT6Zly5bExcUB8PTTT9OvXz8iIiLIzMzkxRdfZN68eWzevJlOnTrV6MGIOCKbzeDrLYd5/rs9nMgtBGBMlxD+b0w0of6edq6uBuRnm7dwNrxTunowFogaDf3ugTaX6xaOSANVK2HEUsEvjJkzZzJlyhQAhgwZQps2bZg1axYADz74IN988w1paWk0bdqUnj178s9//pPu3bvX+MGIOLKsvCJeWZbAJz8nYTPA09WZ+4dGcOdlbXF3cbZ3eZfOZoP9y8wVhA/8WLo9MObsLZwbwbUBhC8RKaHp4EUc1K6j2Ty5YAcbD50CoG1zb54c24khUYF2rqwGHUuAX94xO7wW5ZnbPJtCzynQ+y5NPS/SQCiMiDgwwzCYF3+EZxfv4dhpc2TZ8E5BPHF1J8IDGtCKumdOmQv1bXjXXB8HwOIM0WOh7z3Qqp9u4Yg4MIURkQbgdH4Rr/6wj5nrDmG1Gbi7OHHvkPbcM7g9Hq4N4NbNOTYrJHxn3sI59FPp9pCuZijpfB24OMCCgyJShsKISAOyN/00T87fyfqDJwAID/DkiatjGBYdWGFfLoeVvtMMJb9+CcVnZ3P1bgE9b4ded2jaeREHojAi0sAYhsGi7an8c+Fu0rLNL+khUS14cmwMbZuXv1ClQ8s7CZtnwcb3SydSc3KBmGvM+UraXq6rJSL1nMKISAOVW1DM6yv28/5PBymyGrg5O3H3oLZMvSICLzcXe5dX86zFsOdbs8Prb6edd/OByGHQ8WqIGAae/nYrUUTKpzAi0sAdPJbDU9/uYvXeYwCE+nnwj6s7MapzcMO7dXPO0XjY8hHsWQw5aaXbnVzM+Uo6joGoURqNI1JPKIyINAKGYbB0VzpPf7uLI5lnABgY0YwZ42KICPSxc3W1yGaDo1thz0JIWAzH9pR9PqSbecWk42gI7KQROSJ2ojAi0ojkF1l5a+UB3lp1gMJiGy5OFu64rC1/GRpJE/cGeOvm904cgD2LzEfKL8Bvfq01bQNRY8xgEt4PnBvBn4dIPaEwItIIJZ/I4+mFu/hhdzoAgT7u/H10NOO7hTbcWze/l5MBe783b+Uc+BGspSuA4xlg3saJGm2uJOzWgOZsEamHFEZEGrEVezJ46tudJJ0wZzft0yaAGeNjiA5pZJ+fwlwzkOxZZAaUM6dKn3PxhPZXmMEkahR4N4DFCUXqGYURkUYuv8jKB2sSee3HfeQX2XB2snBrv9Y8OLwDfp6u9i6v7lmLzdE4CYvNvibnZnwFsDhBeN+zHWBHQ7P29qtTpAFRGBERAI5knuFfi3axeLs5+qSZtxuPjerI9T3CcHJqJLdufs8wzMnV9iyChEWQuq3s803bmrdx2l9pzmfi4WefOkUcnMKIiJTx075jPLVgJweO5QLQs3VTnhnfmU6h+kyRmWJOR79nISStBVtx6XMWZwjrXRpOQrurE6xIJSmMiMh5CottzFybyKvL95FXaMXJArcNaMODwzvg69EIb92Up+A0HFpj9jU58COc2F/2eQ8/aDu4NJw0bW2fOkUcgMKIiFQoNesM/1y4m0XbUwFo4ePO/zW2UTeVdSoJDq4wg8nBlZCfVfb5gPZlb+m4N+D5XUSqSGFERC5q9d5jPLlgJ4nHzVs3/doF8Mz4zkQG6Qu1XDarOdnauasmKRvAsJY+7+QCYX0g4mw4CekGTg1odWWRKlIYEZFKKSi28t7qg7z2434Kzk6YduflbfnLlZF4N4YJ0y5FflbZWzonD5Z93rMptBtiBpN2V4B/uF3KFLEXhRERqZKUk3nM+LZ0wrQQPw+euLoTIxvyWjc17WRiaTBJXA0F2WWfb97BDCXtr4DWA8FDv8+kYVMYEZFqWb47nScX7OTwKXOtm0EdWjBjXAxtm3vbuTIHYy2GI5tLw8mRTWDYSp93coGWvcxg0m4ItOwJzupELA2LwoiIVFt+kZU3V+zn7VUHKbTacHN24p7B7fjzFRF4uKoPRLWcyYTEVWYn2AMr4FRi2efdfKDNZaXhpHkHLfAnDk9hREQuWeLxXJ6Yv4Of9h0HIDzAk6fGxjA0OsjOlTUApw6ZweTgSji4Cs6cLPu8T+jZ/iZXmEOJffRnLo5HYUREaoRhGHy/I42nF+4iNSsfgGHRQTw5thPhAVporkbYbJD2qzmE+OBKSFpfdoE/gMCY0nDSegC46baZ1H8KIyJSo3ILivnvj/v44KdEim0GHq5O3HdFBHcPaoe7i27d1KiiM5D8c2k4Sf0V+M2vaidXcy2dc+EkpJtmhZV6SWFERGrFvvTTPD5/Bz8fNG8rtGvuzYzxMVwe2cLOlTVguSfO9jdZAQdWQlZy2efd/cwJ19oNMa+atOio+U2kXlAYEZFaYxgGC7Yd5ZmFuzmeY95OGNMlhH9cHU2In6edq2vgDMOcz+TgSjOcJK4+f1ZYVy8I6QqhPaBlD3M9nYB26hArdU5hRERqXXZ+Ea8s3cvH6w9hM8DLzZlpwyK5fWBbXJ2d7F1e42CzwtH40ls6R7dCYc757Tz8zVAS2v1sQOkBvqEKKFKrFEZEpM7sPJrF4/N2sCU5E4DIwCY8NS6GgRHN7VtYY2Szmov7HdkCR7eY/03bfn6HWIAmQb+5enL2Cop3s7qvWRoshRERqVM2m8HXWw7z3Hd7OJlbCMDImGD+b0y0Rt3YW3EhZOwqDSdH482ff7uuzjn+rX4XULpp8T+pNoUREbGLrLwi/v3DXj75OQmrzcDdxYk/DW7PvYPb4+mmTpX1RmGeecWkJKBsMa+onMdiTsB2LpyE94agzpotVipFYURE7Coh7TRPLdjJ+oMnAAj18+D/xnRidBetdVNvncmE1Piz4WSr+chKOb+dq5c5fX14X/MR1gu8Auq6WnEACiMiYnfnJkz756LdHMk017rp1y6Ap8bF0DFYn2WHkJNhhpIjW8z1dQ5vPH/0DkDzKGjVtzSgNItQ51hRGBGR+uNMoZV3Vh/grZUHKCi24WSBW/u15sHhHfD3crN3eVIVNhsc3wspv5Q+yru94xkA4X1Kw0lod3BT36HGRmFEROqdw6fyeHbxbhZvTwOgqZcrj4yIYmLvVjg76V/RDiv3OKRsOBtONpj9T4rzy7ZxcoHgWGjVrzSk+Ibap16pMwojIlJvrdt/nKe+3cnedHM+jE4hvswYH0PvNup30CAUF5pr7Zy7cpL8C+Sknd/OL7z0ykl4n7MdYzWtfUOiMCIi9Vqx1canPyfxyrK9ZOcXAzC+WyjTR0UT7Odh5+qkRhkGZCb/5urJL5C+Awxb2Xau3mYoaT3AfLTsCa6a0deRKYyIiEM4kVPAS0sTmLMxBePsLK5Tr4jgzsva4uGqocANVsFpOLLZDCjJP5sdYwuyy7ZxcjUDSev+0GqA2UHWw88+9Uq1KIyIiEPZfjiLJxeUzuLaupkXj4/pxNDoQA0FbgxsNnMituT1kLQWktaff2vH4gRBMdB6ILTqb149aRJon3qlUhRGRMThGIbB/PijPLt4NxmnzenLB3dowRNjO9G+RRM7Vyd16tyCgMnrzWCStBZOJZ7frlmEGUpanb21499KQ4rrEYUREXFYOQXFvLFiP+//dJAiq4GLk4U7LmvL/VdG4OOhmT8brexUSF5nhpPk9ZC+E/jdV5hvy9KrJq0HmPOfOGnRRntRGBERh5d4PJd/LtzF8j0ZADRv4s5jI6O4rkcYThoKLGdOmSN1ktaa4eToVrAVl23jGXA2nPSHkG7gF2YGFhfNb1MXFEZEpMFYsSeDpxfuIvF4LgAxob48MiKKIR1aqD+JlCrMhcObSvudpGyE4jPlNLSYKxb7hVXwCAevZrrdUwMURkSkQSkstjFzbSKv/bifnALzX7992gTw15FR9NL8JFIeaxGkbivtEHt8L2QdBmvBxfd18TCvoJwLJ78PLL4tNaNsJdRKGImLi+Obb75hz549eHp6MmDAAJ5//nmioqIuuN9XX33F448/zqFDh4iMjOT5559n9OjRNX4wItLwncwt5M0V+/n45yQKi815Kq7sGMgjV0XRKVS/H+QiDAPyTpgLAGYd/s0jBbKOmP9f3gRt5fFqVjasNO8AwV0gsBO4q8M11FIYGTlyJBMnTqR3794UFxfz97//nR07drBr1y68vb3L3WfdunUMGjSIuLg4rr76ambPns3zzz/Pli1b6Ny5c40ejIg0HqlZZ/jv8n18uekwVpv5a2xc11AeGt6BNs3L/30kUinFBZB9tDSoZB/+XXA5DIU5F3gBCzRrbwaToM7mNPjBXcAnuNHd+qmT2zTHjh0jMDCQVatWMWjQoHLb3HTTTeTm5rJw4cKSbf369aNbt268/fbblXofhRERqcjBYzm8smwvC39NBcDZycJNvcP5y5WRmslVaodhQH5m6ZWUrBRzhtmMXZC2o+IrK17NzFAS3MUMKEGdoXkkODfcEWKV/f6+pEUAsrLMZaQDAiq+X7t+/XoeeuihMttGjBjBvHnzKtynoKCAgoLSe3rZ2dkVthWRxq1diya8fksP7hmcxUtLE1iZcIzZvyTzv82HmTKgDfcMbk9Tb42ckBpksYBnU/MRXM4V/pwMSNtuTnmftt18HN9r3h46uNJ8nOPsDoHR5uucu4ISFNPoZpqtdhix2WxMmzaNgQMHXvB2S1paGkFBQWW2BQUFkZZW8T25uLg4ZsyYUd3SRKQR6tzSj1m392FD4kle+H4Pm5JO8c7qg8z+JZm7B7Xjzsva4u2uRdikDjQJhIih5uOcojOQsbs0nKTvMK+iFJ6G1Hjz8Vv+rUuvoAR3hhYdwdXLnIXWydn8b5n/d/7dz451O6jan8ypU6eyY8cO1qxZU5P1ADB9+vQyV1Oys7MJDw+v8fcRkYanT9sAvrqnPysSMnhxyV52p2bzyrK9fLTuEFOviGBSv1a4u2jNG6ljrp7Qsof5OMdmg8xDZij5bUjJSoHMJPOxZ2GFL3lhlrJB5bcBpiS0/DbAWODGTyC0Ww0cbNVVK4zcd999LFy4kNWrVxMWFnbBtsHBwaSnp5fZlp6eTnBwcIX7uLu74+7uXp3SRESwWCxc2TGIIR0CWbg9lVeWJnDoRB5PL9zFB2sSeWBYJNd2b4mLs2bmFDtycoKAduaj07jS7XknS6+cnAspJ/aDtfDsSseV6eppnD8B3MVUtX0NqlIHVsMwuP/++5k7dy4rV64kMjLyovvcdNNN5OXl8e2335ZsGzBgALGxserAKiJ1oshq46tNh3l1+V7Ss83+aO1bePPIVVGM7BysidPEsRiGGUpsVvO/hvU3/2/7zXPW37W7yHMtOtb4kORaGU3z5z//mdmzZzN//vwyc4v4+fnh6ekJwOTJk2nZsiVxcXGAObR38ODBPPfcc4wZM4Y5c+bw7LPPamiviNS5/CIrH68/xJsrD5CZVwRAbJgfj46I4rKI5golIjWsVsJIRR/UmTNnMmXKFACGDBlCmzZtmDVrVsnzX331Ff/4xz9KJj174YUXNOmZiNhNdn4R768+yPtrEskrtALQv10zHh0ZRY9WTe1cnUjDoengRUQu4nhOAW+s2M9nPydTaDVncx3eKYhpwyKJCW1cQytFaoPCiIhIJR0+lcd/l+/j682HOTuZK8Oig/jL0Ahiw/ztWpuII1MYERGpov0ZObz24z6+3Xa0JJRcEdWC+4dG6vaNSDUojIiIVNOBYzm8sWI/8+OPlqx7c3lkcx4YGqkVgkWqQGFEROQSHTqey5sr9/PNliMUnw0lA9o34y9DI+nXrpmdqxOp/xRGRERqSMrJPN5ceYCvN6dQZDV/ZfZpG8ADQyMZ0L6ZhgSLVEBhRESkhh3JPMPbKw/wxcaUktE3PVs35S9DIxkUqXlKRH5PYUREpJakZeXz9qoDfL4hmYJiM5R0DffngaERXBEVqFAicpbCiIhILcvIzufd1Qf59Jck8ovMUNKlpR9/GRrJsGiFEhGFERGROnI8p4D3fjrIJ+uTSmZ0jQ7x5YGhEVzVKRgnJ4USaZwURkRE6tjJ3EI+WHOQj9YlkVNgroAaFeTD/UMjGNU5BGeFEmlkFEZEROwkM6+QD9ceYubaRE7nm6EkIrAJ918ZwdWxoQol0mgojIiI2FnWmSJmrT3EB2sOkn02lLRr7s39QyMYGxuKi7OTnSsUqV0KIyIi9cTp/CI+Xp/Eez8dJDOvCFAokcZBYUREpJ7JLSjm4/VJvLv6AKcUSqQRUBgREamncgqK+Xj9Id5bfVChRBo0hRERkXpOoUQaOoUREREHoVAiDZXCiIiIg1EokYZGYURExEEplEhDoTAiIuLgFErE0SmMiIg0EAol4qgURkREGhiFEnE0CiMiIg2UQok4CoUREZEGrrxQ0rqZF3df3o7re4bh4eps5wqlsVMYERFpJMoLJc2buHP7wDb8oV9r/Dxd7VyhNFYKIyIijUxeYTFfbEzhvdUHOZqVD0ATdxcm9W3FHZe1JcjXw84VSmOjMCIi0kgVWW0siD/KO6sPsDc9BwA3Zyeu7dGSPw5qR7sWTexcoTQWCiMiIo2czWawIiGDt1YeYFPSKQAsFhgZE8w9g9vTNdzfvgVKg6cwIiIiJTYeOsnbKw+wfE9GybYB7Ztx75D2XBbRHIvFYsfqpKFSGBERkfMkpJ3mnVUHmL/tKFab+es/JtSXe4e0Z1TnEJydFEqk5iiMiIhIhQ6fyuP9nxL5YmMKZ4qsgDks+I+D2nFdDw0LlpqhMCIiIhd1MreQj9Yd4qP1h8j8zbDgOy4zhwX7emhYsFSfwoiIiFRaXmExczak8P5PvxsW3K8Vdw5sS6CGBUs1KIyIiEiVVTQs+LqeLfnjoPa0be5t5wrFkSiMiIhItdlsBj/uyeDtVWWHBQ+PDuLOy9rSp22ARuDIRSmMiIhIjShvWHDnlr7ceVlbxnQJxc1FC/NJ+RRGRESkRu1LP82Haw/xzZbDFBTbAAj0cWdy/9bc0rc1Ad5udq5Q6huFERERqRUncwv5fEMyH607RMbpAgDcXZy4tkcYd17WhohAHztXKPWFwoiIiNSqwmIbi7Yf5YM1iew4kl2yfXCHFtx5WVsuj9TMro2dwoiIiNQJwzDYkHiSD9Yksmx3Oue+VToENeGOgW2Z0L2lJlFrpBRGRESkziWdyGXWukN8uTGF3EJzZtcAbzf+0LcVf+jfmkAfzVfSmFT2+7vKXaBXr17N2LFjCQ0NxWKxMG/evAu2X7lyJRaL5bxHWlpaVd9aRETqudbNvHlybAzr/z6Uf4yJpqW/JydzC/nvj/sZ+NyPPPRlPDuPZtm7TKlnqhxGcnNz6dq1K2+88UaV9ktISCA1NbXkERgYWNW3FhERB+Hr4cpdl7dj1aNDeHNSD3q2bkqR1eCbLUcY8981THx3Pct2pWOz1fuL81IHXKq6w6hRoxg1alSV3ygwMBB/f/8q7yciIo7LxdmJ0V1CGN0lhPiUTD5Yk8ji7an8fPAkPx88SZtmXtw+sC3X9wzD273KX0nSQNTZTDXdunUjJCSE4cOHs3bt2gu2LSgoIDs7u8xDREQcW7dwf167uTs//fUK7hncHl8PFw6dyOPJBTvpH7ecZxfvJvF4rr3LFDuo9TASEhLC22+/zf/+9z/+97//ER4ezpAhQ9iyZUuF+8TFxeHn51fyCA8Pr+0yRUSkjoT6e/K3UR35+e9DeWZ8DG2be5OdX8y7qw9yxUsruemd9czbeoT8Iqu9S5U6ckmjaSwWC3PnzmXChAlV2m/w4MG0atWKTz75pNznCwoKKCgoKPk5Ozub8PBwjaYREWmAbDaDFQkZfPZLMisTMjjXjcTP05Vrurfkpt7hRIfod78jquxoGrvcoOvTpw9r1qyp8Hl3d3fc3d3rsCIREbEXJycLQ6ODGBodxNHMM3y16TBfbkrhSOYZZq07xKx1h+ga7s/NvcO5umsoTdS3pMGxyxmNj48nJCTEHm8tIiL1WKi/Jw8Mi+S+KyNYs/84X2xMZunOdLalZLItJZOnF+5iXNdQbuodTrdwf83w2kBUOYzk5OSwf//+kp8TExOJj48nICCAVq1aMX36dI4cOcLHH38MwH/+8x/atm1LTEwM+fn5vP/++/z4448sXbq05o5CREQaFGcnC4M7tGBwhxYczyngmy2HmbMhhYPHc5mzMYU5G1PoGOzDTb3DuaZ7S/y9tEifI6tyn5GVK1dyxRVXnLf9tttuY9asWUyZMoVDhw6xcuVKAF544QXeffddjhw5gpeXF7GxsTzxxBPlvkZFNAOriIgYhsHGQ6eYsyGZRdtTS1YOdnNxYlTnYCb2bkW/dgG6WlKPaDp4ERFpsLLOFDE//gifb0hhd2rp9A9tmnlxU+9WXNezpaaerwcURkREpMEzDIPtR7KYszGFBfFHySkoBsDFycLQ6EAm9m7FoA4tcHbS1RJ7UBgREZFGJbegmEW/pjJnYzJbkjNLtof4eXBDr3Bu7BVGWFMv+xXYCCmMiIhIo5WQdpovNqbwzdbDZOYVAWCxwOWRLZjYO5xh0UG4udTZJOSNlsKIiIg0evlFVpbuSmfOhmTWHThRsr2ZtxvX9jAnVIsI9LFjhQ2bwoiIiMhvJJ3I5ctNKXy16TAZp0tn+e7Vuik39Q5nTGwIXm6aUK0mKYyIiIiUo9hqY2XCMeZsTGFFQgbWs/PP+7i7MK5bKBN7t6JzS18NEa4BCiMiIiIXkZ6dz9ebD/PFxhSST+aVbO8U4svEPuGM79oSPy9XO1bo2BRGREREKslmM/j54AnmbEzh+x1pFFrNCdXcXZwY3SWEib3D6dNWE6pVlcKIiIhINZzKLWRe/BHmbEghIf10yfa2zb25qXc41/UIo4WPFnOtDIURERGRS2AYBtsOZ/HFxmQWxB8lt9AKaEK1qlAYERERqSEXnFCtZxg39AonPEATqv2ewoiIiEgtqGhCtcsimnNDr3Cu6hSEh6uznausHxRGREREalFBsZWlO9P5YmMKa/YfL9nu6+HChO4tubFXODGhjXuIsMKIiIhIHUk5mcdXmw/z9aYUjmbll2yPDvHlxl5hTOjWkqbebnas0D4URkREROqY1Waw7sBxvtx0mCU70ygsNocIuzk7MbxTEDf2DueyiOaNptOrwoiIiIgdZeYVsmDbUb7clMKOI9kl20P8PLi+ZxjX9wyjdTNvO1ZY+xRGRERE6omdR7P4atNh5sUfKen0CtCvXQA39gpnVOcQPN0aXqdXhREREZF6pqDYyg+7MvhiUwo/7TvGuW9gH3cXru4ayo29wugW7t9gOr0qjIiIiNRjRzPP8L/Nh/lq8+Ey6+JEBjbhxl7hXNOjJc2bOPZMrwojIiIiDsBmM/gl8SRfbUph8Y5U8ovMTq8uThau7BjITb3DGdyhBS7OTnautOoURkRERBxMdn4RC7el8uWmFOJTMku2t/BxZ1zXUMZ1DSU2zM9hbuMojIiIiDiwvemn+WpTCt9sOcKJ3MKS7W2aeZnBpFsoEYE+dqzw4hRGREREGoDCYhur9x5jwbajLNuVzpkia8lznUJ8Gd8tlLFdQwn197RjleVTGBEREWlgcguK+WF3Ogvij7Jq7zGKbaVf4X3aBDC2WyhjuoQQUE9me1UYERERacBO5Rby3Y405scfYcOhkyXDhF2cLFwW2Zzx3UIZ3imYJu4udqtRYURERKSRSM06w8JtqSzYdpTtR7JKtnu4OjE0OojxXUMZHNUCd5e6nVhNYURERKQROngshwXbjrIg/igHj+eWbPf1cGFk52DGd2tJv3bN6mR9HIURERGRRswwDHYezWZ+/BG+3ZZKWnbpasItfNy5OjaEcV1Da3XGV4URERERAcyJ1TYcOsn8+KN8tyO1zPo4rQLMocI39Q4nPMCrRt9XYURERETOU1hs46d95lDhpTtLhwp/fEcfBnVoUaPvVdnvb/t1sRUREZE65+ZidmodGh1EXmExP+zO4Mfd6Qxo38xuNSmMiIiINFJebi4l08zbk+OtuiMiIiINisKIiIiI2JXCiIiIiNiVwoiIiIjYlcKIiIiI2JXCiIiIiNiVwoiIiIjYlcKIiIiI2JXCiIiIiNiVwoiIiIjYVZXDyOrVqxk7diyhoaFYLBbmzZt30X1WrlxJjx49cHd3JyIiglmzZlWjVBEREWmIqhxGcnNz6dq1K2+88Ual2icmJjJmzBiuuOIK4uPjmTZtGnfddRdLliypcrEiIiLS8FR5obxRo0YxatSoSrd/++23adu2LS+//DIA0dHRrFmzhn//+9+MGDGi3H0KCgooKCgo+Tk7O7uqZYqIiIiDqPVVe9evX8+wYcPKbBsxYgTTpk2rcJ+4uDhmzJhx3naFEhEREcdx7nvbMIwLtqv1MJKWlkZQUFCZbUFBQWRnZ3PmzBk8PT3P22f69Ok89NBDJT8fOXKETp06ER4eXtvlioiISA07ffo0fn5+FT5f62GkOtzd3XF3dy/5uUmTJqSkpODj44PFYqmx98nOziY8PJyUlBR8fX1r7HXrq8Z0vDrWhqsxHa+OteFqLMdrGAanT58mNDT0gu1qPYwEBweTnp5eZlt6ejq+vr7lXhUpj5OTE2FhYbVRHgC+vr4N+i/D7zWm49WxNlyN6Xh1rA1XYzjeC10ROafW5xnp378/y5cvL7Nt2bJl9O/fv7bfWkRERBxAlcNITk4O8fHxxMfHA+bQ3fj4eJKTkwGzv8fkyZNL2t9zzz0cPHiQv/71r+zZs4c333yTL7/8kgcffLBmjkBEREQcWpXDyKZNm+jevTvdu3cH4KGHHqJ79+488cQTAKSmppYEE4C2bduyaNEili1bRteuXXn55Zd5//33KxzWW5fc3d158skny/RPacga0/HqWBuuxnS8OtaGq7Ed78VYjIuNtxERERGpRVqbRkREROxKYURERETsSmFERERE7EphREREROxKYURERETsqsGHkTfeeIM2bdrg4eFB37592bBhwwXbf/XVV3Ts2BEPDw+6dOnC4sWL66jSSxMXF0fv3r3x8fEhMDCQCRMmkJCQcMF9Zs2ahcViKfPw8PCoo4qr76mnnjqv7o4dO15wH0c9r23atDnvWC0WC1OnTi23vaOd09WrVzN27FhCQ0OxWCzMmzevzPOGYfDEE08QEhKCp6cnw4YNY9++fRd93ap+7uvChY61qKiIxx57jC5duuDt7U1oaCiTJ0/m6NGjF3zN6nwW6sLFzuuUKVPOq3vkyJEXfd36eF7h4sdb3mfYYrHw4osvVvia9fXc1pYGHUa++OILHnroIZ588km2bNlC165dGTFiBBkZGeW2X7duHTfffDN33nknW7duZcKECUyYMIEdO3bUceVVt2rVKqZOncrPP//MsmXLKCoq4qqrriI3N/eC+/n6+pKamlrySEpKqqOKL01MTEyZutesWVNhW0c+rxs3bixznMuWLQPghhtuqHAfRzqnubm5dO3alTfeeKPc51944QX++9//8vbbb/PLL7/g7e3NiBEjyM/Pr/A1q/q5rysXOta8vDy2bNnC448/zpYtW/jmm29ISEhg3LhxF33dqnwW6srFzivAyJEjy9T9+eefX/A16+t5hYsf72+PMzU1lQ8//BCLxcJ11113wdetj+e21hgNWJ8+fYypU6eW/Gy1Wo3Q0FAjLi6u3PY33nijMWbMmDLb+vbta/zpT3+q1TprQ0ZGhgEYq1atqrDNzJkzDT8/v7orqoY8+eSTRteuXSvdviGd1wceeMBo3769YbPZyn3eUc+pYRgGYMydO7fkZ5vNZgQHBxsvvvhiybbMzEzD3d3d+Pzzzyt8nap+7u3h98dang0bNhiAkZSUVGGbqn4W7KG8Y73tttuM8ePHV+l1HOG8Gkblzu348eONK6+88oJtHOHc1qQGe2WksLCQzZs3M2zYsJJtTk5ODBs2jPXr15e7z/r168u0BxgxYkSF7euzrKwsAAICAi7YLicnh9atWxMeHs748ePZuXNnXZR3yfbt20doaCjt2rVj0qRJZWb9/b2Gcl4LCwv59NNPueOOOy64erWjntPfS0xMJC0trcy58/Pzo2/fvhWeu+p87uurrKwsLBYL/v7+F2xXlc9CfbJy5UoCAwOJiori3nvv5cSJExW2bUjnNT09nUWLFnHnnXdetK2jntvqaLBh5Pjx41itVoKCgspsDwoKIi0trdx90tLSqtS+vrLZbEybNo2BAwfSuXPnCttFRUXx4YcfMn/+fD799FNsNhsDBgzg8OHDdVht1fXt25dZs2bx/fff89Zbb5GYmMjll1/O6dOny23fUM7rvHnzyMzMZMqUKRW2cdRzWp5z56cq5646n/v6KD8/n8cee4ybb775giu6VvWzUF+MHDmSjz/+mOXLl/P888+zatUqRo0ahdVqLbd9QzmvAB999BE+Pj5ce+21F2znqOe2ulzsXYDUvKlTp7Jjx46L3l/s379/mdWTBwwYQHR0NO+88w7PPPNMbZdZbaNGjSr5/9jYWPr27Uvr1q358ssvK/WvDUf1wQcfMGrUKEJDQyts46jnVEoVFRVx4403YhgGb7311gXbOupnYeLEiSX/36VLF2JjY2nfvj0rV65k6NChdqys9n344YdMmjTpoh3LHfXcVleDvTLSvHlznJ2dSU9PL7M9PT2d4ODgcvcJDg6uUvv66L777mPhwoWsWLGCsLCwKu3r6upK9+7d2b9/fy1VVzv8/f3p0KFDhXU3hPOalJTEDz/8wF133VWl/Rz1nAIl56cq5646n/v65FwQSUpKYtmyZRe8KlKei30W6qt27drRvHnzCut29PN6zk8//URCQkKVP8fguOe2shpsGHFzc6Nnz54sX768ZJvNZmP58uVl/uX4W/379y/THmDZsmUVtq9PDMPgvvvuY+7cufz444+0bdu2yq9htVrZvn07ISEhtVBh7cnJyeHAgQMV1u3I5/WcmTNnEhgYyJgxY6q0n6OeUzBX/A4ODi5z7rKzs/nll18qPHfV+dzXF+eCyL59+/jhhx9o1qxZlV/jYp+F+urw4cOcOHGiwrod+bz+1gcffEDPnj3p2rVrlfd11HNbafbuQVub5syZY7i7uxuzZs0ydu3aZfzxj380/P39jbS0NMMwDOPWW281/va3v5W0X7t2reHi4mK89NJLxu7du40nn3zScHV1NbZv326vQ6i0e++91/Dz8zNWrlxppKamljzy8vJK2vz+eGfMmGEsWbLEOHDggLF582Zj4sSJhoeHh7Fz5057HEKlPfzww8bKlSuNxMREY+3atcawYcOM5s2bGxkZGYZhNKzzahjmqIFWrVoZjz322HnPOfo5PX36tLF161Zj69atBmC88sorxtatW0tGkDz33HOGv7+/MX/+fOPXX381xo8fb7Rt29Y4c+ZMyWtceeWVxmuvvVby88U+9/ZyoWMtLCw0xo0bZ4SFhRnx8fFlPsMFBQUlr/H7Y73YZ8FeLnSsp0+fNh555BFj/fr1RmJiovHDDz8YPXr0MCIjI438/PyS13CU82oYF/97bBiGkZWVZXh5eRlvvfVWua/hKOe2tjToMGIYhvHaa68ZrVq1Mtzc3Iw+ffoYP//8c8lzgwcPNm677bYy7b/88kujQ4cOhpubmxETE2MsWrSojiuuHqDcx8yZM0va/P54p02bVvJnExQUZIwePdrYsmVL3RdfRTfddJMREhJiuLm5GS1btjRuuukmY//+/SXPN6TzahiGsWTJEgMwEhISznvO0c/pihUryv17e+6YbDab8fjjjxtBQUGGu7u7MXTo0PP+HFq3bm08+eSTZbZd6HNvLxc61sTExAo/wytWrCh5jd8f68U+C/ZyoWPNy8szrrrqKqNFixaGq6ur0bp1a+Puu+8+L1Q4ynk1jIv/PTYMw3jnnXcMT09PIzMzs9zXcJRzW1sshmEYtXrpRUREROQCGmyfEREREXEMCiMiIiJiVwojIiIiYlcKIyIiImJXCiMiIiJiVwojIiIiYlcKIyIiImJXCiMiIiJiVwojIiIiYlcKIyIiImJXCiMiIiJiV/8PDJ8pgP8Z8QAAAAAASUVORK5CYII=\n"
          },
          "metadata": {}
        }
      ],
      "source": [
        "pd.DataFrame(history.history).plot()\n",
        "plt.title(\"Loss\")\n",
        "plt.show()"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 10,
      "id": "138d6368",
      "metadata": {
        "id": "138d6368",
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "outputId": "9b93e877-e123-40d1-cf72-c19e9ba617e0"
      },
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "### Result on the Training Set ###\n",
            "FRENCH (SOURCE)                ENGLISH (TARGET)          AUTOMATIC TRANSLATION IN ENGLISH\n",
            "\n",
            "nous en savons assez           we know enough            we re\n",
            "garde ton sang froid           stay calm                 keep calm\n",
            "je ne pleurerai pas            i won t cry               i didn t go\n",
            "je ne suis pas contente        i m not happy             i m not busy\n",
            "moi je veux ça                 i want that               i ll try\n",
            "j étais tellement heureuse     i was so happy            i m too busy\n",
            "j aime le printemps            i like spring             i like cookies\n",
            "c est mon garçon               that s my boy             it s my dog\n",
            "mille mercis                   many thanks               thanks a\n",
            "quelle horreur                 how horrible              how nothing\n",
            "soyez satisfaites              be content                be content\n",
            "toi décide                     you decide                you promised\n",
            "je m en suis remis             i recovered               i recovered\n",
            "ce sont les affaires           it s business             it is good\n",
            "je dois m en aller             i need to go              i must to go\n",
            "sommes nous prêtes             are we ready              are we kidding\n",
            "arrêtez de crier               stop shouting             stop grumbling\n",
            "je lis souvent                 i often read              i m ashamed\n",
            "les plantes croissent          plants grow               plants stinks\n",
            "il m a fallu le faire          i had to do it            i had to it\n",
            "nous éclatâmes de rire         we broke up               we lost\n",
            "\n",
            "\n",
            "### Result on the Test Set ###\n",
            "FRENCH (SOURCE)                ENGLISH (TARGET)          AUTOMATIC TRANSLATION IN ENGLISH\n",
            "\n",
            "ils ont abandonné              they gave up              they lost\n",
            "rappelle moi                   call me back              help me\n",
            "je veux essayer                i want to try             i want to you\n",
            "ça fonctionne bien             it works well             it was hard\n",
            "grimpe dans la camionnette     get in the van            get on the bus\n",
            "je suis mince                  i m thin                  i m innocent\n",
            "elle semble riche              she seems rich            she sued well\n",
            "ça me gave                     this annoys me            i m wrong\n",
            "c était long                   it was long               how thrilling\n",
            "c était un mensonge            it was a lie              it was a lie\n",
            "conduis toi en homme           act like a man            get to sleep\n",
            "laissez moi m en occuper       leave it to me            let me alone\n",
            "puis je manger ceci            may i eat this            can i go it\n",
            "devine                         make a guess              let s go\n",
            "je ne suis pas jolie           i m not pretty            i m not fat\n",
            "demande à quiconque            ask anyone                stop clichés\n",
            "venez nous rejoindre           come join us              are us\n",
            "vous ennuyez vous              are you bored             you you you\n",
            "je ne viendrai pas             i won t come              i can t go\n",
            "c est un voleur                he is a thief             it s a joke\n",
            "bien joué                      well done                 good job\n"
          ]
        }
      ],
      "source": [
        "def word_for_id(integer, tokenizer):\n",
        "    # map an integer to a word\n",
        "    for word, index in tokenizer.word_index.items():\n",
        "        if index == integer:\n",
        "            return word\n",
        "    return None\n",
        "\n",
        "def predict_seq(model, tokenizer, source):\n",
        "    # generate target from a source sequence\n",
        "    prediction = model.predict(source, verbose=0)[0]\n",
        "    integers = [np.argmax(vector) for vector in prediction]\n",
        "    target = list()\n",
        "    for i in integers:\n",
        "        word = word_for_id(i, tokenizer)\n",
        "        if word is None:\n",
        "            break\n",
        "        target.append(word)\n",
        "    return ' '.join(target)\n",
        "\n",
        "def compare_prediction(model, tokenizer, sources, raw_dataset, limit=20):\n",
        "    # evaluate a model\n",
        "    actual, predicted = [], []\n",
        "    src = f'{source_str.upper()} (SOURCE)'\n",
        "    tgt = f'{target_str.upper()} (TARGET)'\n",
        "    pred = f'AUTOMATIC TRANSLATION IN {target_str.upper()}'\n",
        "    print(f'{src:30} {tgt:25} {pred}\\n')\n",
        "\n",
        "    for i, source in enumerate(sources): # translate encoded source text\n",
        "        source = source.reshape((1, source.shape[0]))\n",
        "        translation = predict_seq(model, tokenizer, source)\n",
        "        raw_target, raw_src = raw_dataset[i]\n",
        "        print(f'{raw_src:30} {raw_target:25} {translation}')\n",
        "        if i >= limit: # Display some of the result\n",
        "            break\n",
        "\n",
        "# test on some training sequences\n",
        "print('### Result on the Training Set ###')\n",
        "compare_prediction(model, tar_tokenizer, trainX, train)\n",
        "\n",
        "# test on some test sequences\n",
        "print('\\n\\n### Result on the Test Set ###')\n",
        "compare_prediction(model, tar_tokenizer, testX, test)"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 11,
      "id": "2e935484",
      "metadata": {
        "id": "2e935484"
      },
      "outputs": [],
      "source": [
        "# It takes long to compute the BLEU Score\n",
        "\n",
        "def bleu_score(model, tokenizer, sources, raw_dataset):\n",
        "    # Get the bleu score of a model\n",
        "    actual, predicted = [], []\n",
        "    for i, source in enumerate(sources):\n",
        "        # translate encoded source text\n",
        "        source = source.reshape((1, source.shape[0]))\n",
        "        translation = predict_seq(model, tar_tokenizer, source)\n",
        "        raw_target, raw_src = raw_dataset[i]\n",
        "        actual.append([raw_target.split()])\n",
        "        predicted.append(translation.split())\n",
        "\n",
        "    bleu_dic = {}\n",
        "    bleu_dic['1-grams'] = corpus_bleu(actual, predicted, weights=(1.0, 0, 0, 0))\n",
        "    bleu_dic['1-2-grams'] = corpus_bleu(actual, predicted, weights=(0.5, 0.5, 0, 0))\n",
        "    bleu_dic['1-3-grams'] = corpus_bleu(actual, predicted, weights=(0.3, 0.3, 0.3, 0))\n",
        "    bleu_dic['1-4-grams'] = corpus_bleu(actual, predicted, weights=(0.25, 0.25, 0.25, 0.25))\n",
        "\n",
        "    return bleu_dic\n",
        "\n",
        "# Compute the BLEU Score\n",
        "bleu_train = bleu_score(model, tar_tokenizer, trainX, train)\n",
        "bleu_test = bleu_score(model, tar_tokenizer, testX, test)"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 12,
      "id": "d955dd33",
      "metadata": {
        "id": "d955dd33",
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 452
        },
        "outputId": "abcb44b3-1ea2-407b-c09b-a4e31a918949"
      },
      "outputs": [
        {
          "output_type": "display_data",
          "data": {
            "text/plain": [
              "<Figure size 640x480 with 1 Axes>"
            ],
            "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGzCAYAAAD9pBdvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAyG0lEQVR4nO3deVhV1cLH8R+gHAYDxAFETZTMeQrDEa0biealvNXNtFK5pdXVJm63tEwzSyyHsLJ81evwZA5lZYOKGenN0jfLobduaZhjKih6BYUEhfX+0cPJE4McBJfg9/M853k866y19tp74eHH3muf42GMMQIAALDE0/YAAADA5Y0wAgAArCKMAAAAqwgjAADAKsIIAACwijACAACsIowAAACrCCMAAMAqwggAALCKMAKgXJ599ll5eHi4VTcjI6NCx7B+/Xp5eHho+fLlFdrvxTZs2DCFh4eXq6078wBcqggjuOgWLFggDw8Pl0f9+vV1/fXXa/Xq1UXqe3h4aNSoUaX2ed111xXps/DRsmVLZ73z/VJs27atrrvuuvPuQ15enmbMmKFOnTopICBAQUFBatOmjUaMGKEdO3act311NWnSJK1YsaLC+128eLGSkpIqvN+yOnTokJ599llt377d2hiqO9tzDLtq2B4ALl/PPfecmjZtKmOM0tPTtWDBAt1000366KOP9Oc//9nt/ho1aqTExMQi5YGBgRUxXBe33XabVq9erUGDBmn48OE6c+aMduzYoY8//ljdu3d3CUDV1dixYzV69GiXskmTJun222/XgAEDKnRbixcv1vfff69HH320Qvstq0OHDmnChAkKDw9Xx44dK7z/OXPmqKCgoFxti5uHqsj2HMMuwgis6devnzp37ux8fu+99yokJERLliwpVxgJDAzU3XffXZFDLNbXX3+tjz/+WC+88IKeeuopl9dee+01nThxotLHUOj06dPy9vaWp+fFP8lZo0YN1ajBW0hxcnJy5OfnV+b6NWvWLPe2mAdUB1ymwSUjKChIvr6+l/wb688//yxJ6tGjR5HXvLy8VKdOHZeygwcP6t5771VYWJgcDoeaNm2qBx98UHl5ec46u3fv1l//+lcFBwfLz89PXbt21cqVK136KVwfsXTpUo0dO1YNGzaUn5+fsrKyJElfffWV+vbtq8DAQPn5+al379768ssvS90XY4zq1q2rhIQEZ1lBQYGCgoLk5eXlEqxefPFF1ahRQ6dOnZJUdK2Ch4eHsrOztXDhQuclsmHDhrls78SJExo2bJiCgoIUGBio+Ph45eTklDrG6667TitXrtS+ffuc/f5xfUVBQYFeeOEFNWrUSD4+Prrhhhu0a9euIn2V5xitX79e1157rSQpPj7eOYYFCxY4x9e2bVtt2bJFvXr1kp+fnzOkfvDBB+rfv79z7iMiIjRx4kTl5+e7bOOPa0b27t0rDw8PTZ06VbNnz1ZERIQcDoeuvfZaff311y5ti1szUnhpc8WKFWrbtq0cDofatGmj5OTkYvevc+fO8vHxUUREhP7nf/6nzOtQUlNTddtttyk0NFQ+Pj5q1KiR7rzzTmVmZrrUW7RokSIjI+Xr66vg4GDdeeedOnDggPP1sswxqrdL+10f1VpmZqYyMjJkjNGRI0f06quv6tSpU+U+u5Gfn1/sWhBfX1/5+/tf6HCdmjRpIkl666231KNHj1LD06FDhxQVFaUTJ05oxIgRatmypQ4ePKjly5crJydH3t7eSk9PV/fu3ZWTk6OHH35YderU0cKFC3XzzTdr+fLl+stf/uLS58SJE+Xt7a3HH39cubm58vb21meffaZ+/fopMjJS48ePl6enp+bPn68//elP2rBhg6Kiooodn4eHh3r06KHPP//cWfZ///d/yszMlKenp7788kv1799fkrRhwwZ16tRJtWrVKravN998U/fdd5+ioqI0YsQISVJERIRLnTvuuENNmzZVYmKitm7dqrlz56p+/fp68cUXSzyGTz/9tDIzM/XLL7/o5ZdflqQiY5g8ebI8PT31+OOPKzMzUy+99JLuuusuffXVV8465T1GrVq10nPPPadx48ZpxIgRio6OliR1797dWefYsWPq16+f7rzzTt19990KCQmR9Nv6qFq1aikhIUG1atXSZ599pnHjxikrK0tTpkwpcZ8LLV68WCdPntT9998vDw8PvfTSS7r11lu1e/fu855N+eKLL/Tee+/p73//u6644gq98soruu2227R//35nYN62bZv69u2rBg0aaMKECcrPz9dzzz2nevXqnXdseXl5io2NVW5urh566CGFhobq4MGD+vjjj3XixAnn5dEXXnhBzzzzjO644w7dd999Onr0qF599VX16tVL27ZtU1BQUJnmGNWcAS6y+fPnG0lFHg6HwyxYsKBIfUlm5MiRpfbZu3fvYvuUZO6//35nvfHjxxtJ5ujRo8X206ZNG9O7d+9St1VQUODcXkhIiBk0aJCZOXOm2bdvX5G6Q4YMMZ6enubrr78uth9jjHn00UeNJLNhwwbnaydPnjRNmzY14eHhJj8/3xhjzLp164wk06xZM5OTk+PST/PmzU1sbKyzT2OMycnJMU2bNjU33nhjqfszZcoU4+XlZbKysowxxrzyyiumSZMmJioqyjz55JPGGGPy8/NNUFCQeeyxx5ztCo/lufz9/c3QoUOLbKOw7t/+9jeX8r/85S+mTp06pY7PGGP69+9vmjRpUqS88Ji0atXK5ObmOstnzJhhJJnvvvvOGHPhx+jrr782ksz8+fOLvFb4szBr1qwir507T4Xuv/9+4+fnZ06fPu0sGzp0qMv+7dmzx0gyderUMcePH3eWf/DBB0aS+eijj5xlxc2DJOPt7W127drlLPv222+NJPPqq686y+Li4oyfn585ePCgsyw1NdXUqFGjSJ9/tG3bNiPJvPPOOyXW2bt3r/Hy8jIvvPCCS/l3331natSo4VJe0hzj8sBlGlgzc+ZMrV27VmvXrtWiRYt0/fXX67777tN7771Xrv7Cw8Od/Z37qOgFcR4eHlqzZo2ef/551a5dW0uWLNHIkSPVpEkTDRw40Hlpo6CgQCtWrFBcXJzL2phz+5GkVatWKSoqSj179nS+VqtWLY0YMUJ79+7VDz/84NJu6NCh8vX1dT7fvn27UlNTNXjwYB07dkwZGRnKyMhQdna2brjhBn3++eelLo6Mjo5Wfn6+Nm7cKOm3MyDR0dGKjo7Whg0bJEnff/+9Tpw44TwrUF4PPPBAkW0fO3bMeampvOLj4+Xt7e3Sr/Tb5S/pwo/R+TgcDsXHxxcpP3eeTp48qYyMDEVHRysnJ6dMd10NHDhQtWvXLnG/ShMTE+NyZqp9+/YKCAhwts3Pz9enn36qAQMGKCwszFnvqquuUr9+/c7bf+GZjzVr1pR4qe29995TQUGB7rjjDucxz8jIUGhoqJo3b65169addzu4PHCZBtZERUW5/JIeNGiQOnXqpFGjRunPf/6zyy+XsvD391dMTMwFj6ss18odDoeefvppPf300zp8+LD+/e9/a8aMGXr77bdVs2ZNLVq0SEePHlVWVpbatm1bal/79u1Tly5dipS3atXK+fq5fTRt2tSlXmpqqqTfQkpJMjMzXX6pneuaa66Rn5+fNmzYoNjYWG3YsEETJkxQaGioXn31VZ0+fdoZSs4NTOVx5ZVXujwvHNN///tfBQQEVEq/0oUfo/Np2LBhsT+v//nPfzR27Fh99tlnRQLXH9dVFOd8++VO28L2hW2PHDmiX3/9VVdddVWResWV/VHTpk2VkJCg6dOn66233lJ0dLRuvvlm3X333c6gkpqaKmOMmjdvXmwfF7JwF9ULYQSXDE9PT11//fWaMWOGUlNT1aZNmwrfho+PjyTp119/Lfb1nJwcZ52yatCgge68807ddtttatOmjd5++23n4sbKcO5f25Kcf9FPmTKlxNtOS7v+XrNmTXXp0kWff/65du3apbS0NEVHRyskJERnzpzRV199pQ0bNqhly5ZlWktQGi8vr2LLjTGV2u+FHqPz+eOcSL8t1u3du7cCAgL03HPPKSIiQj4+Ptq6dauefPLJMp2JuZDjVVnH+lzTpk3TsGHD9MEHH+iTTz7Rww8/rMTERP3v//6vGjVqpIKCAnl4eGj16tXFjod1IShEGMEl5ezZs5LkvGOjohUuPt25c6caN27s8lpOTo4OHDigPn36lKvvmjVrqn379kpNTVVGRobq16+vgIAAff/99+cd086dO4uUF57GLxxzSQpPxQcEBJT7zFB0dLRefPFFffrpp6pbt65atmwpDw8PtWnTRhs2bNCGDRvKdLt1ZX0S6IX2e6HHqDzbX79+vY4dO6b33ntPvXr1cpbv2bPH7b4qQ/369eXj41PsXUfFlZWkXbt2ateuncaOHauNGzeqR48emjVrlp5//nlFRETIGKOmTZvq6quvLrUfPkX28saaEVwyzpw5o08++UTe3t7OSxQV7YYbbpC3t7feeOONIn+Zzp49W2fPnj3v9fLU1FTt37+/SPmJEye0adMm1a5dW/Xq1ZOnp6cGDBigjz76SN98802R+oV/od50003avHmzNm3a5HwtOztbs2fPVnh4uFq3bl3qeCIjIxUREaGpU6cWG+KOHj1aanvptzCSm5urpKQk9ezZ0/mLITo6Wm+++aYOHTpUpvUi/v7+lfI5K/7+/mW6rFGSCz1GhXdjubNvhWcCzj0TkZeXp9dff73MfVQmLy8vxcTEaMWKFTp06JCzfNeuXcV+EvIfZWVlOf94KNSuXTt5enoqNzdXknTrrbfKy8tLEyZMKHJGxhijY8eOOZ9f6ByjauPMCKxZvXq186//I0eOaPHixUpNTdXo0aOLrB/45ptv9Pzzzxfp47rrrnOuY8jMzNSiRYuK3Vbh7cL169fXuHHjNHbsWPXq1Us333yz/Pz8tHHjRi1ZskR9+vRRXFxcqeP+9ttvNXjwYPXr10/R0dEKDg7WwYMHtXDhQh06dEhJSUnOX0STJk3SJ598ot69e2vEiBFq1aqVDh8+rHfeeUdffPGFgoKCNHr0aC1ZskT9+vXTww8/rODgYC1cuFB79uzRu+++e94PNPP09NTcuXPVr18/tWnTRvHx8WrYsKEOHjyodevWKSAgQB999FGpfXTr1k01atTQzp07nbflSlKvXr30xhtvSFKZwkhkZKQ+/fRTTZ8+XWFhYWratGmx62HcFRkZqWXLlikhIUHXXnutatWqdd55OteFHqOIiAgFBQVp1qxZuuKKK+Tv768uXboUWb9zru7du6t27doaOnSoHn74YXl4eOjNN9+s0MskF+rZZ5/VJ598oh49eujBBx9Ufn6+XnvtNbVt2/a8H33/2WefadSoUfrrX/+qq6++WmfPntWbb74pLy8v3XbbbZJ+O27PP/+8xowZo71792rAgAG64oortGfPHr3//vsaMWKEHn/8cUkXPseo4izdxYPLWHG39vr4+JiOHTuaN954w+XWS2NMibfsSjITJ040xpR+a29xP+aLFi0yXbt2Nf7+/sbhcJiWLVuaCRMmuNxuWZL09HQzefJk07t3b9OgQQNTo0YNU7t2bfOnP/3JLF++vEj9ffv2mSFDhph69eoZh8NhmjVrZkaOHOlyK+rPP/9sbr/9dhMUFGR8fHxMVFSU+fjjj136KbyNtaRbKbdt22ZuvfVWU6dOHeNwOEyTJk3MHXfcYVJSUs67T8YYc+211xpJ5quvvnKW/fLLL0aSady4cZH6xd1SumPHDtOrVy/j6+trJDlv8y3plurCn4U9e/aUOrZTp06ZwYMHm6CgICPJeQtoScek8NbYP96KeyHH6IMPPjCtW7d23vZa2Hfv3r1NmzZtim3z5Zdfmq5duxpfX18TFhZmnnjiCbNmzRojyaxbt85Zr6Rbe6dMmVKkT0lm/Pjxzucl3dpb3O3wTZo0KXLrdUpKiunUqZPx9vY2ERERZu7cueYf//iH8fHxKfV47N692/ztb38zERERxsfHxwQHB5vrr7/efPrpp0Xqvvvuu6Znz57G39/f+Pv7m5YtW5qRI0eanTt3OuuUNMe4PHgYcwnFdACAdQMGDNB//vMf511IQGVjzQgAXMb+eGdZamqqVq1aVaZvrwYqCmdGAOAy1qBBAw0bNkzNmjXTvn379MYbbyg3N1fbtm0r8fNBgIrGAlYAuIz17dtXS5YsUVpamhwOh7p166ZJkyYRRHBRuX2Z5vPPP1dcXJzCwsLk4eGhFStWnLfN+vXrdc0118jhcOiqq66q1A+EAgCU3fz587V3716dPn1amZmZSk5O1jXXXGN7WLjMuB1GsrOz1aFDB82cObNM9ffs2aP+/fvr+uuv1/bt2/Xoo4/qvvvu05o1a9weLAAAqH4uaM2Ih4eH3n//fQ0YMKDEOk8++aRWrlzp8imUd955p06cOKHk5OTybhoAAFQTlb5mZNOmTUU+fjk2NrbUb1LNzc11foKf9Nv3Shw/flx16tThI4MBAKgijDE6efKkwsLCSv0Ax0oPI2lpaQoJCXEpCwkJUVZWln799ddiv2AqMTFREyZMqOyhAQCAi+DAgQNq1KhRia9fknfTjBkzRgkJCc7nmZmZuvLKK3XgwIEL+ppxAABw8WRlZalx48a64oorSq1X6WEkNDRU6enpLmXp6ekKCAgo9qyIJDkcDjkcjiLlAQEBhBEAAKqY8y2xqPRPYO3WrZtSUlJcytauXatu3bpV9qYBAEAV4HYYOXXqlLZv3+78Rsc9e/Zo+/btzq9UHzNmjIYMGeKs/8ADD2j37t164okntGPHDr3++ut6++239dhjj1XMHgAAgCrN7TDyzTffqFOnTurUqZMkKSEhQZ06ddK4ceMkSYcPH3YGE0lq2rSpVq5cqbVr16pDhw6aNm2a5s6dq9jY2AraBQAAUJVVie+mycrKUmBgoDIzM1kzAgBAFVHW3998ay8AALCKMAIAAKwijAAAAKsIIwAAwCrCCAAAsIowAgAArCKMAAAAqwgjAADAKsIIAACwijACAACsIowAAACrCCMAAMAqwggAALCKMAIAAKwijAAAAKsIIwAAwCrCCAAAsIowAgAArCKMAAAAqwgjAADAKsIIAACwijACAACsIowAAACrCCMAAMAqwggAALCKMAIAAKwijAAAAKsIIwAAwCrCCAAAsIowAgAArCKMAAAAqwgjAADAKsIIAACwijACAACsIowAAACrCCMAAMAqwggAALCKMAIAAKwijAAAAKsIIwAAwCrCCAAAsIowAgAArCKMAAAAqwgjAADAKsIIAACwijACAACsIowAAACrCCMAAMAqwggAALCKMAIAAKwijAAAAKsIIwAAwCrCCAAAsIowAgAArCKMAAAAqwgjAADAKsIIAACwijACAACsIowAAACrCCMAAMAqwggAALCKMAIAAKwijAAAAKvKFUZmzpyp8PBw+fj4qEuXLtq8eXOp9ZOSktSiRQv5+vqqcePGeuyxx3T69OlyDRgAAFQvboeRZcuWKSEhQePHj9fWrVvVoUMHxcbG6siRI8XWX7x4sUaPHq3x48frxx9/1L/+9S8tW7ZMTz311AUPHgAAVH1uh5Hp06dr+PDhio+PV+vWrTVr1iz5+flp3rx5xdbfuHGjevToocGDBys8PFx9+vTRoEGDzns2BQAAXB7cCiN5eXnasmWLYmJifu/A01MxMTHatGlTsW26d++uLVu2OMPH7t27tWrVKt10000lbic3N1dZWVkuDwAAUD3VcKdyRkaG8vPzFRIS4lIeEhKiHTt2FNtm8ODBysjIUM+ePWWM0dmzZ/XAAw+UepkmMTFREyZMcGdoAACgiqr0u2nWr1+vSZMm6fXXX9fWrVv13nvvaeXKlZo4cWKJbcaMGaPMzEzn48CBA5U9TAAAYIlbZ0bq1q0rLy8vpaenu5Snp6crNDS02DbPPPOM7rnnHt13332SpHbt2ik7O1sjRozQ008/LU/PonnI4XDI4XC4MzQAAFBFuXVmxNvbW5GRkUpJSXGWFRQUKCUlRd26dSu2TU5OTpHA4eXlJUkyxrg7XgAAUM24dWZEkhISEjR06FB17txZUVFRSkpKUnZ2tuLj4yVJQ4YMUcOGDZWYmChJiouL0/Tp09WpUyd16dJFu3bt0jPPPKO4uDhnKAEAAJcvt8PIwIEDdfToUY0bN05paWnq2LGjkpOTnYta9+/f73ImZOzYsfLw8NDYsWN18OBB1atXT3FxcXrhhRcqbi8AAECV5WGqwLWSrKwsBQYGKjMzUwEBAbaHAwAAyqCsv7/5bhoAAGAVYQQAAFhFGAEAAFYRRgAAgFWEEQAAYBVhBAAAWEUYAQAAVhFGAACAVYQRAABgFWEEAABYRRgBAABWEUYAAIBVhBEAAGAVYQQAAFhFGAEAAFYRRgAAgFWEEQAAYBVhBAAAWEUYAQAAVhFGAACAVYQRAABgFWEEAABYRRgBAABWEUYAAIBVhBEAAGAVYQQAAFhFGAEAAFYRRgAAgFWEEQAAYBVhBAAAWEUYAQAAVhFGAACAVYQRAABgFWEEAABYRRgBAABWEUYAAIBVhBEAAGAVYQQAAFhFGAEAAFYRRgAAgFWEEQAAYBVhBAAAWEUYAQAAVhFGAACAVYQRAABgFWEEAABYRRgBAABWEUYAAIBVhBEAAGAVYQQAAFhFGAEAAFYRRgAAgFWEEQAAYBVhBAAAWEUYAQAAVhFGAACAVYQRAABgFWEEAABYRRgBAABWEUYAAIBVhBEAAGBVDdsDsC189ErbQ7hs7Z3c3/YQAACXAM6MAAAAq8oVRmbOnKnw8HD5+PioS5cu2rx5c6n1T5w4oZEjR6pBgwZyOBy6+uqrtWrVqnINGAAAVC9uX6ZZtmyZEhISNGvWLHXp0kVJSUmKjY3Vzp07Vb9+/SL18/LydOONN6p+/fpavny5GjZsqH379ikoKKgixg8AAKo4t8PI9OnTNXz4cMXHx0uSZs2apZUrV2revHkaPXp0kfrz5s3T8ePHtXHjRtWsWVOSFB4efmGjBgAA1YZbl2ny8vK0ZcsWxcTE/N6Bp6diYmK0adOmYtt8+OGH6tatm0aOHKmQkBC1bdtWkyZNUn5+fonbyc3NVVZWlssDAABUT26FkYyMDOXn5yskJMSlPCQkRGlpacW22b17t5YvX678/HytWrVKzzzzjKZNm6bnn3++xO0kJiYqMDDQ+WjcuLE7wwQAAFVIpd9NU1BQoPr162v27NmKjIzUwIED9fTTT2vWrFklthkzZowyMzOdjwMHDlT2MAEAgCVurRmpW7euvLy8lJ6e7lKenp6u0NDQYts0aNBANWvWlJeXl7OsVatWSktLU15enry9vYu0cTgccjgc7gwNAABUUW6dGfH29lZkZKRSUlKcZQUFBUpJSVG3bt2KbdOjRw/t2rVLBQUFzrKffvpJDRo0KDaIAACAy4vbl2kSEhI0Z84cLVy4UD/++KMefPBBZWdnO++uGTJkiMaMGeOs/+CDD+r48eN65JFH9NNPP2nlypWaNGmSRo4cWXF7AQAAqiy3b+0dOHCgjh49qnHjxiktLU0dO3ZUcnKyc1Hr/v375en5e8Zp3Lix1qxZo8cee0zt27dXw4YN9cgjj+jJJ5+suL0AAABVlocxxtgexPlkZWUpMDBQmZmZCggIqNC++W4ae/huGgCo3sr6+5vvpgEAAFYRRgAAgFWEEQAAYBVhBAAAWEUYAQAAVhFGAACAVYQRAABgFWEEAABYRRgBAABWEUYAAIBVhBEAAGAVYQQAAFhFGAEAAFYRRgAAgFWEEQAAYBVhBAAAWEUYAQAAVhFGAACAVYQRAABgFWEEAABYRRgBAABWEUYAAIBVhBEAAGAVYQQAAFhFGAEAAFYRRgAAgFWEEQAAYBVhBAAAWEUYAQAAVhFGAACAVTVsDwCoLOGjV9oewmVr7+T+tocAoArhzAgAALCKMAIAAKwijAAAAKsIIwAAwCrCCAAAsIowAgAArCKMAAAAqwgjAADAKsIIAACwijACAACsIowAAACrCCMAAMAqwggAALCKMAIAAKwijAAAAKsIIwAAwCrCCAAAsIowAgAArCKMAAAAqwgjAADAKsIIAACwijACAACsIowAAACrCCMAAMAqwggAALCKMAIAAKwijAAAAKsIIwAAwCrCCAAAsIowAgAArCKMAAAAqwgjAADAqnKFkZkzZyo8PFw+Pj7q0qWLNm/eXKZ2S5culYeHhwYMGFCezQIAgGrI7TCybNkyJSQkaPz48dq6das6dOig2NhYHTlypNR2e/fu1eOPP67o6OhyDxYAAFQ/boeR6dOna/jw4YqPj1fr1q01a9Ys+fn5ad68eSW2yc/P11133aUJEyaoWbNm591Gbm6usrKyXB4AAKB6quFO5by8PG3ZskVjxoxxlnl6eiomJkabNm0qsd1zzz2n+vXr695779WGDRvOu53ExERNmDDBnaEBuIyEj15pewiXrb2T+9seAqoht86MZGRkKD8/XyEhIS7lISEhSktLK7bNF198oX/961+aM2dOmbczZswYZWZmOh8HDhxwZ5gAAKAKcevMiLtOnjype+65R3PmzFHdunXL3M7hcMjhcFTiyAAAwKXCrTBSt25deXl5KT093aU8PT1doaGhRer//PPP2rt3r+Li4pxlBQUFv224Rg3t3LlTERER5Rk3AACoJty6TOPt7a3IyEilpKQ4ywoKCpSSkqJu3boVqd+yZUt999132r59u/Nx88036/rrr9f27dvVuHHjC98DAABQpbl9mSYhIUFDhw5V586dFRUVpaSkJGVnZys+Pl6SNGTIEDVs2FCJiYny8fFR27ZtXdoHBQVJUpFyAABweXI7jAwcOFBHjx7VuHHjlJaWpo4dOyo5Odm5qHX//v3y9OSDXQEAQNmUawHrqFGjNGrUqGJfW79+faltFyxYUJ5NAgCAaopTGAAAwCrCCAAAsIowAgAArCKMAAAAqwgjAADAKsIIAACwijACAACsIowAAACrCCMAAMAqwggAALCKMAIAAKwijAAAAKsIIwAAwCrCCAAAsIowAgAArCKMAAAAqwgjAADAKsIIAACwijACAACsIowAAACrCCMAAMAqwggAALCKMAIAAKwijAAAAKsIIwAAwCrCCAAAsIowAgAArCKMAAAAqwgjAADAKsIIAACwijACAACsIowAAACrCCMAAMAqwggAALCKMAIAAKwijAAAAKsIIwAAwCrCCAAAsIowAgAArCKMAAAAqwgjAADAKsIIAACwijACAACsIowAAACrCCMAAMAqwggAALCKMAIAAKwijAAAAKsIIwAAwCrCCAAAsIowAgAArCKMAAAAqwgjAADAKsIIAACwijACAACsIowAAACrCCMAAMAqwggAALCKMAIAAKwijAAAAKsIIwAAwCrCCAAAsIowAgAArCpXGJk5c6bCw8Pl4+OjLl26aPPmzSXWnTNnjqKjo1W7dm3Vrl1bMTExpdYHAACXF7fDyLJly5SQkKDx48dr69at6tChg2JjY3XkyJFi669fv16DBg3SunXrtGnTJjVu3Fh9+vTRwYMHL3jwAACg6nM7jEyfPl3Dhw9XfHy8WrdurVmzZsnPz0/z5s0rtv5bb72lv//97+rYsaNatmypuXPnqqCgQCkpKSVuIzc3V1lZWS4PAABQPbkVRvLy8rRlyxbFxMT83oGnp2JiYrRp06Yy9ZGTk6MzZ84oODi4xDqJiYkKDAx0Pho3buzOMAEAQBXiVhjJyMhQfn6+QkJCXMpDQkKUlpZWpj6efPJJhYWFuQSaPxozZowyMzOdjwMHDrgzTAAAUIXUuJgbmzx5spYuXar169fLx8enxHoOh0MOh+MijgwAYFv46JW2h3DZ2ju5v9XtuxVG6tatKy8vL6Wnp7uUp6enKzQ0tNS2U6dO1eTJk/Xpp5+qffv27o8UAABUS25dpvH29lZkZKTL4tPCxajdunUrsd1LL72kiRMnKjk5WZ07dy7/aAEAQLXj9mWahIQEDR06VJ07d1ZUVJSSkpKUnZ2t+Ph4SdKQIUPUsGFDJSYmSpJefPFFjRs3TosXL1Z4eLhzbUmtWrVUq1atCtwVAABQFbkdRgYOHKijR49q3LhxSktLU8eOHZWcnOxc1Lp//355ev5+wuWNN95QXl6ebr/9dpd+xo8fr2efffbCRg8AAKq8ci1gHTVqlEaNGlXsa+vXr3d5vnfv3vJsAgAAXCb4bhoAAGAVYQQAAFhFGAEAAFYRRgAAgFWEEQAAYBVhBAAAWEUYAQAAVhFGAACAVYQRAABgFWEEAABYRRgBAABWEUYAAIBVhBEAAGAVYQQAAFhFGAEAAFYRRgAAgFWEEQAAYBVhBAAAWEUYAQAAVhFGAACAVYQRAABgFWEEAABYRRgBAABWEUYAAIBVhBEAAGAVYQQAAFhFGAEAAFYRRgAAgFWEEQAAYBVhBAAAWEUYAQAAVhFGAACAVYQRAABgFWEEAABYRRgBAABWEUYAAIBVhBEAAGAVYQQAAFhFGAEAAFYRRgAAgFWEEQAAYBVhBAAAWEUYAQAAVhFGAACAVYQRAABgFWEEAABYRRgBAABWEUYAAIBVhBEAAGAVYQQAAFhFGAEAAFYRRgAAgFWEEQAAYBVhBAAAWEUYAQAAVhFGAACAVYQRAABgFWEEAABYRRgBAABWEUYAAIBVhBEAAGAVYQQAAFhVrjAyc+ZMhYeHy8fHR126dNHmzZtLrf/OO++oZcuW8vHxUbt27bRq1apyDRYAAFQ/boeRZcuWKSEhQePHj9fWrVvVoUMHxcbG6siRI8XW37hxowYNGqR7771X27Zt04ABAzRgwAB9//33Fzx4AABQ9bkdRqZPn67hw4crPj5erVu31qxZs+Tn56d58+YVW3/GjBnq27ev/vnPf6pVq1aaOHGirrnmGr322msXPHgAAFD11XCncl5enrZs2aIxY8Y4yzw9PRUTE6NNmzYV22bTpk1KSEhwKYuNjdWKFStK3E5ubq5yc3OdzzMzMyVJWVlZ7gy3TApycyq8T5RNZcznuZhbe5jb6qsy55Z5taey5rWwX2NMqfXcCiMZGRnKz89XSEiIS3lISIh27NhRbJu0tLRi66elpZW4ncTERE2YMKFIeePGjd0ZLi5xgUm2R4DKwtxWX8xt9VTZ83ry5EkFBgaW+LpbYeRiGTNmjMvZlIKCAh0/flx16tSRh4eHxZFdWrKystS4cWMdOHBAAQEBtoeDCsK8Vl/MbfXF3BbPGKOTJ08qLCys1HpuhZG6devKy8tL6enpLuXp6ekKDQ0ttk1oaKhb9SXJ4XDI4XC4lAUFBbkz1MtKQEAAP/zVEPNafTG31RdzW1RpZ0QKubWA1dvbW5GRkUpJSXGWFRQUKCUlRd26dSu2Tbdu3VzqS9LatWtLrA8AAC4vbl+mSUhI0NChQ9W5c2dFRUUpKSlJ2dnZio+PlyQNGTJEDRs2VGJioiTpkUceUe/evTVt2jT1799fS5cu1TfffKPZs2dX7J4AAIAqye0wMnDgQB09elTjxo1TWlqaOnbsqOTkZOci1f3798vT8/cTLt27d9fixYs1duxYPfXUU2revLlWrFihtm3bVtxeXKYcDofGjx9f5JIWqjbmtfpibqsv5vbCeJjz3W8DAABQifhuGgAAYBVhBAAAWEUYAQAAVhFGAACAVYQRAABgFWGkgn3++eeKi4tTWFiYPDw8Sv1CQFx63J2/48eP66GHHlKLFi3k6+urK6+8Ug8//LDzyx1x6SjP/837779fERER8vX1Vb169XTLLbeU+D1csOdC3neNMerXrx/v15YRRipYdna2OnTooJkzZ1bqds6cOVOp/V+u3J2/Q4cO6dChQ5o6daq+//57LViwQMnJybr33nsrfGx5eXkV3uflpDz/NyMjIzV//nz9+OOPWrNmjYwx6tOnj/Lz8yt0bMzthbmQ992kpKRK/c4z5raMDCqNJPP++++ft96PP/5oevToYRwOh2nVqpVZu3atS9s9e/YYSWbp0qWmV69exuFwmPnz55uMjAxz5513mrCwMOPr62vatm1rFi9e7NJ37969zahRo8wjjzxigoKCTP369c3s2bPNqVOnzLBhw0ytWrVMRESEWbVqlbPN8ePHzeDBg03dunWNj4+Pueqqq8y8efMq8tBUCWWdvz96++23jbe3tzlz5kyp9WbPnm0aNWpkfH19zYABA8y0adNMYGCg8/Xx48ebDh06mDlz5pjw8HDj4eFhjDFm9erVpkePHiYwMNAEBweb/v37m127djnbFf68LFu2zPTs2dP4+PiYzp07m507d5rNmzebyMhI4+/vb/r27WuOHDnibLdu3Tpz7bXXGj8/PxMYGGi6d+9u9u7d6/b+VwXlndtvv/3WSHI53sVhbu1xZ263bdtmGjZsaA4fPlzmdsxt5SCMVKKy/HCfPXvWtGjRwtx4441m+/btZsOGDSYqKqrYMBIeHm7effdds3v3bnPo0CHzyy+/mClTppht27aZn3/+2bzyyivGy8vLfPXVV87+e/fuba644gozceJE89NPP5mJEycaLy8v069fPzN79mzz008/mQcffNDUqVPHZGdnG2OMGTlypOnYsaP5+uuvzZ49e8zatWvNhx9+WFmH6ZJV3l9Yc+bMMXXr1i21zhdffGE8PT3NlClTzM6dO83MmTNNcHBwkTe1wjefrVu3mm+//dYYY8zy5cvNu+++a1JTU822bdtMXFycadeuncnPzzfG/P7z0rJlS5OcnGx++OEH07VrVxMZGWmuu+4688UXX5itW7eaq666yjzwwAPGGGPOnDljAgMDzeOPP2527dplfvjhB7NgwQKzb98+t/e/KijP3J46dco8+uijpmnTpiY3N7fEesytXWWd2+zsbNOqVSuzYsWKMrdjbisPYaQSleWHe/Xq1aZGjRrm8OHDzrKSzowkJSWdd5v9+/c3//jHP5zPe/fubXr27Ol8fvbsWePv72/uueceZ1nhXwWbNm0yxhgTFxdn4uPjy7KL1Vp5fmEdPXrUXHnlleapp54qtd7AgQNN//79XcruuuuuIm9qNWvWdPkrqKRtSjLfffedMeb3n5e5c+c66yxZssRIMikpKc6yxMRE06JFC2OMMceOHTOSzPr168u0n1WdO3M7c+ZM4+/vbySZFi1anPesCHNrV1nndsSIEebee+91qx1zW3lYM3IRTZo0SbVq1XI+9u/fr507d6px48YKDQ111ouKiiq2fefOnV2e5+fna+LEiWrXrp2Cg4NVq1YtrVmzRvv373ep1759e+e/vby8VKdOHbVr185ZVvi9QkeOHJEkPfjgg1q6dKk6duyoJ554Qhs3brywHa8mipu/c2VlZal///5q3bq1nn32WWd5mzZtnG369esnSdq5c2eReS5u3ps0aaJ69eq5lKWmpmrQoEFq1qyZAgICFB4eLkmlznvhHP9x3gvnPDg4WMOGDVNsbKzi4uI0Y8YMHT58uCyHpVoobW7vuusubdu2Tf/+97919dVX64477tDp06clMbdVQXFz++GHH+qzzz5TUlJSie2Y24vL7S/KQ/k98MADuuOOO5zPw8LC3Grv7+/v8nzKlCmaMWOGkpKS1K5dO/n7++vRRx8tsmCqZs2aLs89PDxcygoXbxUUFEiS+vXrp3379mnVqlVau3atbrjhBo0cOVJTp051a7zVTWnzd/LkSfXt21dXXHGF3n//fZfju2rVKueCY19fX7e2+cc5l6S4uDg1adJEc+bMUVhYmAoKCtS2bdtS571wjv9YVjjnkjR//nw9/PDDSk5O1rJlyzR27FitXbtWXbt2dWvMVVFpcxsYGKjAwEA1b95cXbt2Ve3atfX+++9r0KBBzG0VUNzcTp8+XT///LOCgoJc6t52222Kjo7W+vXrmduLjDByEQUHBys4ONilrEWLFjpw4IDS09OdKfjrr78uU39ffvmlbrnlFt19992SfgsTP/30k1q3bn3BY61Xr56GDh2qoUOHKjo6Wv/85z8v+zBS3PxJv50RiY2NlcPh0IcffigfHx+X15s0aVKkTYsWLYrMc1nm/dixY9q5c6fmzJmj6OhoSdIXX3zhzm6UqlOnTurUqZPGjBmjbt26afHixVXuTa08SprbPzK/XdpWbm6uJOa2KihubkePHq377rvPpaxdu3Z6+eWXFRcXJ4m5vdgIIxXs1KlT2rVrl/P5nj17tH37dgUHB+vKK68sUv/GG29URESEhg4dqpdeekknT57U2LFjJem8t5s1b95cy5cv18aNG1W7dm1Nnz5d6enpFxxGxo0bp8jISLVp00a5ubn6+OOP1apVqwvqs6pwd/6ysrLUp08f5eTkaNGiRcrKylJWVpak3wKdl5dXsdt56KGH1KtXL02fPl1xcXH67LPPtHr16vPOee3atVWnTh3Nnj1bDRo00P79+zV69OgL2OPf93P27Nm6+eabFRYWpp07dyo1NVVDhgy54L4vFe7O7e7du7Vs2TL16dNH9erV0y+//KLJkyfL19dXN910U4nbYW4vPnfnNjQ01OXSeKErr7xSTZs2LXE7zG0lsr1opbpZt26dkVTkMXTo0BLbFN7a6+3tbVq2bGk++ugjI8kkJycbY35f2LRt2zaXdseOHTO33HKLqVWrlqlfv74ZO3asGTJkiLnlllucdXr37m0eeeQRl3ZNmjQxL7/8skuZzlm8NXHiRNOqVSvj6+trgoODzS233GJ2795dziNStbg7fyXVl2T27NlT6rZmz55tGjZs6LxF8PnnnzehoaHO1wtvEfyjtWvXmlatWhmHw2Hat29v1q9fX+yC53N/XgrH+d///tdZNn/+fOfCu7S0NDNgwADToEED4+3tbZo0aWLGjRvnXOlfHbg7twcPHjT9+vUz9evXNzVr1jSNGjUygwcPNjt27Djvtpjbi6s877t/dO5xLg1zWzk8jDGmErMOyuHLL79Uz549tWvXLkVERNgeDi6S4cOHa8eOHdqwYYPtoaCCMbfVF3NbMbhMcwl4//33VatWLTVv3ly7du3SI488oh49ehBEqrmpU6fqxhtvlL+/v1avXq2FCxfq9ddftz0sVADmtvpibisHYeQScPLkST355JPav3+/6tatq5iYGE2bNs32sFDJNm/e7Fwn1KxZM73yyitFFtWhamJuqy/mtnJwmQYAAFjFh54BAACrCCMAAMAqwggAALCKMAIAAKwijAAAAKsIIwAAwCrCCAAAsIowAgAArPp/qcMbpJG8s6gAAAAASUVORK5CYII=\n"
          },
          "metadata": {}
        }
      ],
      "source": [
        "plt.bar(x = bleu_train.keys(), height = bleu_train.values())\n",
        "plt.title(\"BLEU Score with the training set\")\n",
        "plt.ylim((0,1))\n",
        "plt.show()"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 13,
      "id": "f3cf03db",
      "metadata": {
        "id": "f3cf03db",
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 452
        },
        "outputId": "bc1f4f46-5e1b-4beb-8c6a-c0be5257b6fb"
      },
      "outputs": [
        {
          "output_type": "display_data",
          "data": {
            "text/plain": [
              "<Figure size 640x480 with 1 Axes>"
            ],
            "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGzCAYAAAD9pBdvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAviElEQVR4nO3de1RV1aLH8R+gbBACRAVFUdQ6im/DMB9kJUpmpOfU1bSTxvVxLC2N20PTNLNEMw07WQ71pI46pmbZqVTMSI+aDjUf3br5zGcqKHoExQKDef9osGvHQzZCM/D7GWOP4Z57zrnm2hPZP9aaa20PY4wRAACAJZ62BwAAAK5vhBEAAGAVYQQAAFhFGAEAAFYRRgAAgFWEEQAAYBVhBAAAWEUYAQAAVhFGAACAVYQRAFY8//zz8vDwcKtuRkZGuY5hw4YN8vDw0IoVK8q1XwDuIYyg0lm0aJE8PDxcHiEhIbrjjju0Zs2aQvU9PDw0atSoEvu8/fbbC/VZ8GjevLmz3tU+FFu1aqXbb7/9qvuQm5ur2bNnq3379goICFBQUJBatmyp4cOHa9++fVdtX1VNnTpVH374Ybn3u2TJEiUnJ5d7v6V16tQpPf/889qzZ0+FbsfmflbU3OH6UM32AICyeuGFF9S4cWMZY5Senq5Fixbp7rvv1scff6x77rnH7f4aNGigpKSkQuWBgYHlMVwX9913n9asWaMBAwZo2LBhunLlivbt26dPPvlEnTt3dglAVdWECRM0duxYl7KpU6fq/vvvV9++fct1W0uWLNE333yjMWPGlGu/pXXq1ClNnjxZERERateuXYVtx+Z+VtTc4fpAGEGl1atXL3Xo0MH5fMiQIQoNDdW7775bpjASGBiov/71r+U5xCLt2LFDn3zyiV566SU9++yzLq+9/vrrunDhQoWPocCPP/4ob29veXr+/gdJq1WrpmrV+BUEgNM0qEKCgoLk6+v7h/+A++677yRJXbp0KfSal5eXatWq5VJ28uRJDRkyRGFhYXI4HGrcuLEeeeQR5ebmOuscPnxY//Vf/6Xg4GDVqFFDt956q1atWuXST8H6iKVLl2rChAmqX7++atSooaysLEnStm3bdNdddykwMFA1atRQt27d9MUXX5S4L8YY1a5dW4mJic6y/Px8BQUFycvLyyVYTZ8+XdWqVdOlS5ckFV4z4uHhoezsbC1evNh5iuzhhx922d6FCxf08MMPKygoSIGBgUpISNDly5dLHOPtt9+uVatW6dixY85+IyIiXOrk5+frpZdeUoMGDeTj46Pu3bvr0KFDhfoqy3u0YcMG3XLLLZKkhIQE5xgWLVrkVr8XL17UmDFjFBERIYfDoZCQEPXo0UO7du0q9X7+1rp169S1a1cFBQXJ399fzZo1KxSQc3JyNGnSJN14441yOBwKDw/X008/rZycHGed0swdUJI/9m9toASZmZnKyMiQMUZnzpzR3//+d126dKnMRzfy8vKKXAvi6+srPz+/ax2uU6NGjSRJ//znP9WlS5cSw9OpU6cUHR2tCxcuaPjw4WrevLlOnjypFStW6PLly/L29lZ6ero6d+6sy5cv6/HHH1etWrW0ePFi3XvvvVqxYoX+/Oc/u/Q5ZcoUeXt768knn1ROTo68vb31+eefq1evXoqKitKkSZPk6emphQsX6s4779SmTZsUHR1d5Pg8PDzUpUsXbdy40Vn2v//7v8rMzJSnp6e++OIL9e7dW5K0adMmtW/fXv7+/kX29fbbb2vo0KGKjo7W8OHDJUlNmzZ1qdOvXz81btxYSUlJ2rVrlxYsWKCQkBBNnz692Pdw/PjxyszM1Pfff69XX31VkgqNYdq0afL09NSTTz6pzMxMvfzyy3rwwQe1bds2Z52yvkeRkZF64YUXNHHiRA0fPlwxMTGSpM6dO7vV74gRI7RixQqNGjVKLVq00Llz57R582bt3btXN998c6n289f+7//+T/fcc4/atGmjF154QQ6HQ4cOHXIJQfn5+br33nu1efNmDR8+XJGRkfr666/16quv6sCBA841IqWZO6BEBqhkFi5caCQVejgcDrNo0aJC9SWZkSNHlthnt27diuxTkvnb3/7mrDdp0iQjyZw9e7bIflq2bGm6detW4rby8/Od2wsNDTUDBgwwc+bMMceOHStUd9CgQcbT09Ps2LGjyH6MMWbMmDFGktm0aZPztYsXL5rGjRubiIgIk5eXZ4wxZv369UaSadKkibl8+bJLPzfddJOJi4tz9mmMMZcvXzaNGzc2PXr0KHF/ZsyYYby8vExWVpYxxpjXXnvNNGrUyERHR5tnnnnGGGNMXl6eCQoKMk888YSzXcF7+Wt+fn5m8ODBhbZRUPe///u/Xcr//Oc/m1q1apU4PmOM6d27t2nUqFGh8oL3JDIy0uTk5DjLZ8+ebSSZr7/+2hhz7e/Rjh07jCSzcOFCl3J3+g0MDLzqz3Fx+1mUV199tcSfZWOMefvtt42np6fLz5YxxsydO9dIMl988YWzrLi5A0qD0zSotObMmaN169Zp3bp1euedd3THHXdo6NCh+uCDD8rUX0REhLO/Xz/KezGgh4eH1q5dqxdffFE1a9bUu+++q5EjR6pRo0bq37+/89RGfn6+PvzwQ8XHx7usjfl1P5K0evVqRUdHq2vXrs7X/P39NXz4cB09elTffvutS7vBgwfL19fX+XzPnj06ePCgBg4cqHPnzikjI0MZGRnKzs5W9+7dtXHjRuXn5xe7PzExMcrLy9OWLVsk/XwEJCYmRjExMdq0aZMk6ZtvvtGFCxecRwXKasSIEYW2fe7cOeepprJKSEiQt7e3S7/Sz6e/pGt/j4rjTr9BQUHatm2bTp06dU37WiAoKEiS9K9//avYsb/33nuKjIxU8+bNnWPLyMjQnXfeKUlav359uYwF4DQNKq3o6GiXD+kBAwaoffv2GjVqlO655x6XD5fS8PPzU2xs7DWPqzT3znA4HBo/frzGjx+v06dP69///rdmz56t5cuXq3r16nrnnXd09uxZZWVlqVWrViX2dezYMXXs2LFQeWRkpPP1X/fRuHFjl3oHDx6U9HNIKU5mZqZq1qxZ5Gs333yzatSooU2bNikuLk6bNm3S5MmTVbduXf3973/Xjz/+6Awlvw5MZdGwYUOX5wVj+s9//qOAgIAK6Ve69veoOO70+/LLL2vw4MEKDw9XVFSU7r77bg0aNEhNmjRxa5sF+vfvrwULFmjo0KEaO3asunfvrr/85S+6//77nQuaDx48qL1796pOnTpF9nHmzJkybRv4LcIIqgxPT0/dcccdmj17tg4ePKiWLVuW+zZ8fHwkST/88EORr1++fNlZp7Tq1aunBx54QPfdd59atmyp5cuXuyxuLG+/PioiyflX8YwZM4q97LSktQfVq1dXx44dtXHjRh06dEhpaWmKiYlRaGiorly5om3btmnTpk1q3rx5sR9qpeXl5VVkuTGmQvu91veoOO70269fP8XExGjlypX69NNPNWPGDE2fPl0ffPCBevXq5fa2fX19tXHjRq1fv16rVq1SSkqKli1bpjvvvFOffvqpvLy8lJ+fr9atW2vWrFlF9hEeHu72doGiEEZQpfz000+S5Lxio7wVLD7dv39/oV/Ely9f1okTJ9SzZ88y9V29enW1adNGBw8eVEZGhkJCQhQQEKBvvvnmqmPav39/ofKCm6cVjLk4BQsNAwICynxkKCYmRtOnT9dnn32m2rVrq3nz5vLw8FDLli21adMmbdq0qVSXW5f2jqzuutZ+r/U9Km777vZbr149Pfroo3r00Ud15swZ3XzzzXrppZecYcTd/fT09FT37t3VvXt3zZo1S1OnTtX48eO1fv16xcbGqmnTpvrqq6/UvXv3q/ZdUXOH6wNrRlBlXLlyRZ9++qm8vb2dpyjKW/fu3eXt7a0333yz0Hn2efPm6aeffrrqX6kHDx7U8ePHC5VfuHBBW7duVc2aNVWnTh15enqqb9+++vjjj/Xll18Wql/wV/vdd9+t7du3a+vWrc7XsrOzNW/ePEVERKhFixYljicqKkpNmzbVK6+8UmSIO3v2bIntpZ/DSE5OjpKTk9W1a1fnB1NMTIzefvttnTp1qlTrRfz8/CrkPit+fn7KzMwsc/trfY8Krsb67b6Vtt+8vLxC4w8JCVFYWJjLJbbu7Of58+cLlRUcnSnos1+/fjp58qTmz59fqO4PP/yg7Oxsl23/nvfIQdXCkRFUWmvWrHH+9X/mzBktWbJEBw8e1NixYwutH/jyyy/14osvFurj9ttvd65jyMzM1DvvvFPktgouFw4JCdHEiRM1YcIE3Xbbbbr33ntVo0YNbdmyRe+++6569uyp+Pj4Esf91VdfaeDAgerVq5diYmIUHByskydPavHixTp16pSSk5Odpw2mTp2qTz/9VN26dXNeWnn69Gm999572rx5s4KCgjR27Fi9++676tWrlx5//HEFBwdr8eLFOnLkiN5///2r3tDM09NTCxYsUK9evdSyZUslJCSofv36OnnypNavX6+AgAB9/PHHJfbRqVMnVatWTfv373de2ilJt912m958801JKlUYiYqK0meffaZZs2YpLCxMjRs3LnI9jLuioqK0bNkyJSYm6pZbbpG/v/9V5+nXrvU9atq0qYKCgjR37lzdcMMN8vPzU8eOHdW4ceNS9Xvx4kU1aNBA999/v9q2bSt/f3999tln2rFjh2bOnFmm/XzhhRe0ceNG9e7dW40aNdKZM2f0xhtvqEGDBs7/Ew899JCWL1+uESNGaP369erSpYvy8vK0b98+LV++XGvXrnWu26qoucN1wvLVPIDbirq018fHx7Rr1868+eabLpdIGmOKvWRXkpkyZYoxpuRLe4v6b/LOO++YW2+91fj5+RmHw2GaN29uJk+ebH788cerjj89Pd1MmzbNdOvWzdSrV89Uq1bN1KxZ09x5551mxYoVheofO3bMDBo0yNSpU8c4HA7TpEkTM3LkSJdLUb/77jtz//33m6CgIOPj42Oio6PNJ5984tJPwWWs7733XpHj2r17t/nLX/5iatWqZRwOh2nUqJHp16+fSU1Nveo+GWPMLbfcYiSZbdu2Ocu+//57I8mEh4cXql/Upb379u0zt912m/H19TWSnJeKFndJdcHPwpEjR0oc26VLl8zAgQNNUFCQkeS8/LW49+TIkSNFXop7Le/Rv/71L9OiRQtTrVq1Qn1frd+cnBzz1FNPmbZt25obbrjB+Pn5mbZt25o33nijVPtZlNTUVNOnTx8TFhZmvL29TVhYmBkwYIA5cOCAS73c3Fwzffp007JlS+NwOEzNmjVNVFSUmTx5ssnMzHTWK27ugNLwMOYaV34BAABcA9aMAAAAqwgjAADAKsIIAACwyu0wsnHjRsXHxyssLEweHh7OL0oqyYYNG3TzzTfL4XDoxhtvrNAbOgEAgMrF7TCSnZ2ttm3bas6cOaWqf+TIEfXu3Vt33HGH9uzZozFjxmjo0KFau3at24MFAABVzzVdTePh4aGVK1eqb9++xdZ55plntGrVKpe7SD7wwAO6cOGCUlJSyrppAABQRVT4Tc+2bt1a6DbHcXFxJX4Tak5OjstdBfPz83X+/HnVqlWLWw4DAFBJGGN08eJFhYWFlXgDxgoPI2lpaQoNDXUpCw0NVVZWln744YdCX9olSUlJSZo8eXJFDw0AAPwOTpw4oQYNGhT7+h/ydvDjxo1TYmKi83lmZqYaNmyoEydOXNPXhAMAgN9PVlaWwsPDdcMNN5RYr8LDSN26dZWenu5Slp6eroCAgCKPikiSw+GQw+EoVB4QEEAYAQCgkrnaEosKv89Ip06dlJqa6lK2bt06derUqaI3DQAAKgG3w8ilS5e0Z88e7dmzR9LPl+7u2bPH+ZXo48aN06BBg5z1R4wYocOHD+vpp5/Wvn379MYbb2j58uV64oknymcPAABApeZ2GPnyyy/Vvn17tW/fXpKUmJio9u3ba+LEiZKk06dPO4OJJDVu3FirVq3SunXr1LZtW82cOVMLFixQXFxcOe0CAACozCrFt/ZmZWUpMDBQmZmZrBkBAKCSKO3nN99NAwAArCKMAAAAqwgjAADAKsIIAACwijACAACsIowAAACrCCMAAMAqwggAALCKMAIAAKwijAAAAKsIIwAAwCrCCAAAsIowAgAArCKMAAAAqwgjAADAKsIIAACwijACAACsIowAAACrCCMAAMAqwggAALCKMAIAAKwijAAAAKsIIwAAwCrCCAAAsIowAgAArCKMAAAAqwgjAADAKsIIAACwijACAACsIowAAACrCCMAAMAqwggAALCKMAIAAKwijAAAAKsIIwAAwCrCCAAAsIowAgAArCKMAAAAqwgjAADAKsIIAACwijACAACsIowAAACrCCMAAMAqwggAALCKMAIAAKwijAAAAKsIIwAAwCrCCAAAsIowAgAArCKMAAAAqwgjAADAKsIIAACwijACAACsIowAAACrCCMAAMAqwggAALCKMAIAAKwijAAAAKsIIwAAwCrCCAAAsIowAgAArCKMAAAAqwgjAADAqjKFkTlz5igiIkI+Pj7q2LGjtm/fXmL95ORkNWvWTL6+vgoPD9cTTzyhH3/8sUwDBgAAVYvbYWTZsmVKTEzUpEmTtGvXLrVt21ZxcXE6c+ZMkfWXLFmisWPHatKkSdq7d6/+8Y9/aNmyZXr22WevefAAAKDyczuMzJo1S8OGDVNCQoJatGihuXPnqkaNGnrrrbeKrL9lyxZ16dJFAwcOVEREhHr27KkBAwZc9WgKAAC4PrgVRnJzc7Vz507Fxsb+0oGnp2JjY7V169Yi23Tu3Fk7d+50ho/Dhw9r9erVuvvuu4vdTk5OjrKyslweAACgaqrmTuWMjAzl5eUpNDTUpTw0NFT79u0rss3AgQOVkZGhrl27yhijn376SSNGjCjxNE1SUpImT57sztAAAEAlVeFX02zYsEFTp07VG2+8oV27dumDDz7QqlWrNGXKlGLbjBs3TpmZmc7HiRMnKnqYAADAEreOjNSuXVteXl5KT093KU9PT1fdunWLbPPcc8/poYce0tChQyVJrVu3VnZ2toYPH67x48fL07NwHnI4HHI4HO4MDQAAVFJuHRnx9vZWVFSUUlNTnWX5+flKTU1Vp06dimxz+fLlQoHDy8tLkmSMcXe8AACginHryIgkJSYmavDgwerQoYOio6OVnJys7OxsJSQkSJIGDRqk+vXrKykpSZIUHx+vWbNmqX379urYsaMOHTqk5557TvHx8c5QAgAArl9uh5H+/fvr7NmzmjhxotLS0tSuXTulpKQ4F7UeP37c5UjIhAkT5OHhoQkTJujkyZOqU6eO4uPj9dJLL5XfXgAAgErLw1SCcyVZWVkKDAxUZmamAgICbA8HAACUQmk/v/luGgAAYBVhBAAAWEUYAQAAVhFGAACAVYQRAABgFWEEAABYRRgBAABWEUYAAIBVhBEAAGAVYQQAAFhFGAEAAFYRRgAAgFWEEQAAYBVhBAAAWEUYAQAAVhFGAACAVYQRAABgFWEEAABYRRgBAABWEUYAAIBVhBEAAGAVYQQAAFhFGAEAAFYRRgAAgFWEEQAAYBVhBAAAWEUYAQAAVhFGAACAVYQRAABgFWEEAABYRRgBAABWEUYAAIBVhBEAAGAVYQQAAFhFGAEAAFYRRgAAgFWEEQAAYBVhBAAAWEUYAQAAVhFGAACAVYQRAABgFWEEAABYRRgBAABWEUYAAIBVhBEAAGAVYQQAAFhFGAEAAFYRRgAAgFWEEQAAYBVhBAAAWEUYAQAAVhFGAACAVYQRAABgFWEEAABYRRgBAABWEUYAAIBVhBEAAGAVYQQAAFhFGAEAAFYRRgAAgFWEEQAAYBVhBAAAWEUYAQAAVpUpjMyZM0cRERHy8fFRx44dtX379hLrX7hwQSNHjlS9evXkcDj0pz/9SatXry7TgAEAQNVSzd0Gy5YtU2JioubOnauOHTsqOTlZcXFx2r9/v0JCQgrVz83NVY8ePRQSEqIVK1aofv36OnbsmIKCgspj/AAAoJLzMMYYdxp07NhRt9xyi15//XVJUn5+vsLDw/XYY49p7NixherPnTtXM2bM0L59+1S9evUyDTIrK0uBgYHKzMxUQEBAmfoAAAC/r9J+frt1miY3N1c7d+5UbGzsLx14eio2NlZbt24tss1HH32kTp06aeTIkQoNDVWrVq00depU5eXlFbudnJwcZWVluTwAAEDV5FYYycjIUF5enkJDQ13KQ0NDlZaWVmSbw4cPa8WKFcrLy9Pq1av13HPPaebMmXrxxReL3U5SUpICAwOdj/DwcHeGCQAAKpEKv5omPz9fISEhmjdvnqKiotS/f3+NHz9ec+fOLbbNuHHjlJmZ6XycOHGioocJAAAscWsBa+3ateXl5aX09HSX8vT0dNWtW7fINvXq1VP16tXl5eXlLIuMjFRaWppyc3Pl7e1dqI3D4ZDD4XBnaAAAoJJy68iIt7e3oqKilJqa6izLz89XamqqOnXqVGSbLl266NChQ8rPz3eWHThwQPXq1SsyiAAAgOuL26dpEhMTNX/+fC1evFh79+7VI488ouzsbCUkJEiSBg0apHHjxjnrP/LIIzp//rxGjx6tAwcOaNWqVZo6dapGjhxZfnsBAAAqLbfvM9K/f3+dPXtWEydOVFpamtq1a6eUlBTnotbjx4/L0/OXjBMeHq61a9fqiSeeUJs2bVS/fn2NHj1azzzzTPntBQAAqLTcvs+IDdxnBACAyqdC7jMCAABQ3ggjAADAKsIIAACwijACAACsIowAAACrCCMAAMAqwggAALCKMAIAAKwijAAAAKsIIwAAwCrCCAAAsIowAgAArCKMAAAAqwgjAADAKsIIAACwijACAACsIowAAACrCCMAAMAqwggAALCKMAIAAKwijAAAAKsIIwAAwCrCCAAAsIowAgAArCKMAAAAqwgjAADAKsIIAACwijACAACsIowAAACrCCMAAMAqwggAALCKMAIAAKyqZnsAtkWMXWV7CNeto9N62x4CAOAPgCMjAADAKsIIAACwijACAACsIowAAACrCCMAAMAqwggAALCKMAIAAKwijAAAAKsIIwAAwCrCCAAAsIowAgAArCKMAAAAqwgjAADAKsIIAACwijACAACsIowAAACrCCMAAMAqwggAALCKMAIAAKwijAAAAKsIIwAAwCrCCAAAsIowAgAArCKMAAAAqwgjAADAKsIIAACwijACAACsIowAAACrCCMAAMAqwggAALCqTGFkzpw5ioiIkI+Pjzp27Kjt27eXqt3SpUvl4eGhvn37lmWzAACgCnI7jCxbtkyJiYmaNGmSdu3apbZt2youLk5nzpwpsd3Ro0f15JNPKiYmpsyDBQAAVY/bYWTWrFkaNmyYEhIS1KJFC82dO1c1atTQW2+9VWybvLw8Pfjgg5o8ebKaNGly1W3k5OQoKyvL5QEAAKomt8JIbm6udu7cqdjY2F868PRUbGystm7dWmy7F154QSEhIRoyZEiptpOUlKTAwEDnIzw83J1hAgCASsStMJKRkaG8vDyFhoa6lIeGhiotLa3INps3b9Y//vEPzZ8/v9TbGTdunDIzM52PEydOuDNMAABQiVSryM4vXryohx56SPPnz1ft2rVL3c7hcMjhcFTgyAAAwB+FW2Gkdu3a8vLyUnp6ukt5enq66tatW6j+d999p6NHjyo+Pt5Zlp+f//OGq1XT/v371bRp07KMGwAAVBFunabx9vZWVFSUUlNTnWX5+flKTU1Vp06dCtVv3ry5vv76a+3Zs8f5uPfee3XHHXdoz549rAUBAADun6ZJTEzU4MGD1aFDB0VHRys5OVnZ2dlKSEiQJA0aNEj169dXUlKSfHx81KpVK5f2QUFBklSoHAAAXJ/cDiP9+/fX2bNnNXHiRKWlpaldu3ZKSUlxLmo9fvy4PD25sSsAACgdD2OMsT2Iq8nKylJgYKAyMzMVEBBQrn1HjF1Vrv2h9I5O6217CACAClTaz28OYQAAAKsIIwAAwCrCCAAAsIowAgAArCKMAAAAqwgjAADAKsIIAACwijACAACsIowAAACr3L4dPFBZcHdde7i7LgB3cGQEAABYRRgBAABWEUYAAIBVhBEAAGAVYQQAAFhFGAEAAFYRRgAAgFWEEQAAYBVhBAAAWEUYAQAAVhFGAACAVYQRAABgFWEEAABYRRgBAABWEUYAAIBVhBEAAGAVYQQAAFhFGAEAAFYRRgAAgFWEEQAAYBVhBAAAWEUYAQAAVhFGAACAVYQRAABgFWEEAABYRRgBAABWEUYAAIBVhBEAAGAVYQQAAFhFGAEAAFYRRgAAgFWEEQAAYBVhBAAAWEUYAQAAVlWzPQAAcFfE2FW2h3DdOjqtt+0hoAriyAgAALCKMAIAAKwijAAAAKsIIwAAwCrCCAAAsIowAgAArCKMAAAAqwgjAADAKsIIAACwijACAACsIowAAACrCCMAAMAqwggAALCKMAIAAKwijAAAAKsIIwAAwCrCCAAAsIowAgAArCpTGJkzZ44iIiLk4+Ojjh07avv27cXWnT9/vmJiYlSzZk3VrFlTsbGxJdYHAADXF7fDyLJly5SYmKhJkyZp165datu2reLi4nTmzJki62/YsEEDBgzQ+vXrtXXrVoWHh6tnz546efLkNQ8eAABUfm6HkVmzZmnYsGFKSEhQixYtNHfuXNWoUUNvvfVWkfX/+c9/6tFHH1W7du3UvHlzLViwQPn5+UpNTS12Gzk5OcrKynJ5AACAqsmtMJKbm6udO3cqNjb2lw48PRUbG6utW7eWqo/Lly/rypUrCg4OLrZOUlKSAgMDnY/w8HB3hgkAACoRt8JIRkaG8vLyFBoa6lIeGhqqtLS0UvXxzDPPKCwszCXQ/Na4ceOUmZnpfJw4ccKdYQIAgEqk2u+5sWnTpmnp0qXasGGDfHx8iq3ncDjkcDh+x5EBAABb3AojtWvXlpeXl9LT013K09PTVbdu3RLbvvLKK5o2bZo+++wztWnTxv2RAgCAKsmt0zTe3t6KiopyWXxasBi1U6dOxbZ7+eWXNWXKFKWkpKhDhw5lHy0AAKhy3D5Nk5iYqMGDB6tDhw6Kjo5WcnKysrOzlZCQIEkaNGiQ6tevr6SkJEnS9OnTNXHiRC1ZskQRERHOtSX+/v7y9/cvx10BAACVkdthpH///jp79qwmTpyotLQ0tWvXTikpKc5FrcePH5en5y8HXN58803l5ubq/vvvd+ln0qRJev75569t9AAAoNIr0wLWUaNGadSoUUW+tmHDBpfnR48eLcsmAADAdYLvpgEAAFYRRgAAgFWEEQAAYBVhBAAAWEUYAQAAVhFGAACAVYQRAABgFWEEAABYRRgBAABWEUYAAIBVhBEAAGAVYQQAAFhFGAEAAFYRRgAAgFWEEQAAYBVhBAAAWEUYAQAAVhFGAACAVYQRAABgFWEEAABYRRgBAABWEUYAAIBVhBEAAGAVYQQAAFhFGAEAAFYRRgAAgFWEEQAAYFU12wMAAECSIsausj2E69bRab2tbp8jIwAAwCrCCAAAsIowAgAArCKMAAAAqwgjAADAKsIIAACwijACAACsIowAAACrCCMAAMAqwggAALCKMAIAAKwijAAAAKsIIwAAwCrCCAAAsIowAgAArCKMAAAAqwgjAADAKsIIAACwijACAACsIowAAACrCCMAAMAqwggAALCKMAIAAKwijAAAAKsIIwAAwCrCCAAAsIowAgAArCKMAAAAqwgjAADAKsIIAACwijACAACsIowAAACrCCMAAMAqwggAALCqTGFkzpw5ioiIkI+Pjzp27Kjt27eXWP+9995T8+bN5ePjo9atW2v16tVlGiwAAKh63A4jy5YtU2JioiZNmqRdu3apbdu2iouL05kzZ4qsv2XLFg0YMEBDhgzR7t271bdvX/Xt21fffPPNNQ8eAABUfm6HkVmzZmnYsGFKSEhQixYtNHfuXNWoUUNvvfVWkfVnz56tu+66S0899ZQiIyM1ZcoU3XzzzXr99devefAAAKDyq+ZO5dzcXO3cuVPjxo1zlnl6eio2NlZbt24tss3WrVuVmJjoUhYXF6cPP/yw2O3k5OQoJyfH+TwzM1OSlJWV5c5wSyU/53K594nSqYj5/DXm1h7mtuqqyLllXu2pqHkt6NcYU2I9t8JIRkaG8vLyFBoa6lIeGhqqffv2FdkmLS2tyPppaWnFbicpKUmTJ08uVB4eHu7OcPEHF5hsewSoKMxt1cXcVk0VPa8XL15UYGBgsa+7FUZ+L+PGjXM5mpKfn6/z58+rVq1a8vDwsDiyP5asrCyFh4frxIkTCggIsD0clBPmtepibqsu5rZoxhhdvHhRYWFhJdZzK4zUrl1bXl5eSk9PdylPT09X3bp1i2xTt25dt+pLksPhkMPhcCkLCgpyZ6jXlYCAAH74qyDmtepibqsu5rawko6IFHBrAau3t7eioqKUmprqLMvPz1dqaqo6depUZJtOnTq51JekdevWFVsfAABcX9w+TZOYmKjBgwerQ4cOio6OVnJysrKzs5WQkCBJGjRokOrXr6+kpCRJ0ujRo9WtWzfNnDlTvXv31tKlS/Xll19q3rx55bsnAACgUnI7jPTv319nz57VxIkTlZaWpnbt2iklJcW5SPX48ePy9PzlgEvnzp21ZMkSTZgwQc8++6xuuukmffjhh2rVqlX57cV1yuFwaNKkSYVOaaFyY16rLua26mJur42Hudr1NgAAABWI76YBAABWEUYAAIBVhBEAAGAVYQQAAFhFGAEAAFYRRsrZxo0bFR8fr7CwMHl4eJT4hYD443F3/s6fP6/HHntMzZo1k6+vrxo2bKjHH3/c+eWO+OMoy//Nv/3tb2ratKl8fX1Vp04d9enTp9jv4YI91/J71xijXr168fvaMsJIOcvOzlbbtm01Z86cCt3OlStXKrT/65W783fq1CmdOnVKr7zyir755hstWrRIKSkpGjJkSLmPLTc3t9z7vJ6U5f9mVFSUFi5cqL1792rt2rUyxqhnz57Ky8sr17Ext9fmWn7vJicnV+h3njG3pWRQYSSZlStXXrXe3r17TZcuXYzD4TCRkZFm3bp1Lm2PHDliJJmlS5ea2267zTgcDrNw4UKTkZFhHnjgARMWFmZ8fX1Nq1atzJIlS1z67tatmxk1apQZPXq0CQoKMiEhIWbevHnm0qVL5uGHHzb+/v6madOmZvXq1c4258+fNwMHDjS1a9c2Pj4+5sYbbzRvvfVWeb41lUJp5++3li9fbry9vc2VK1dKrDdv3jzToEED4+vra/r27WtmzpxpAgMDna9PmjTJtG3b1syfP99EREQYDw8PY4wxa9asMV26dDGBgYEmODjY9O7d2xw6dMjZruDnZdmyZaZr167Gx8fHdOjQwezfv99s377dREVFGT8/P3PXXXeZM2fOONutX7/e3HLLLaZGjRomMDDQdO7c2Rw9etTt/a8Myjq3X331lZHk8n4Xhbm1x5253b17t6lfv745ffp0qdsxtxWDMFKBSvPD/dNPP5lmzZqZHj16mD179phNmzaZ6OjoIsNIRESEef/9983hw4fNqVOnzPfff29mzJhhdu/ebb777jvz2muvGS8vL7Nt2zZn/926dTM33HCDmTJlijlw4ICZMmWK8fLyMr169TLz5s0zBw4cMI888oipVauWyc7ONsYYM3LkSNOuXTuzY8cOc+TIEbNu3Trz0UcfVdTb9IdV1g+s+fPnm9q1a5dYZ/PmzcbT09PMmDHD7N+/38yZM8cEBwcX+qVW8Mtn165d5quvvjLGGLNixQrz/vvvm4MHD5rdu3eb+Ph407p1a5OXl2eM+eXnpXnz5iYlJcV8++235tZbbzVRUVHm9ttvN5s3bza7du0yN954oxkxYoQxxpgrV66YwMBA8+STT5pDhw6Zb7/91ixatMgcO3bM7f2vDMoyt5cuXTJjxowxjRs3Njk5OcXWY27tKu3cZmdnm8jISPPhhx+Wuh1zW3EIIxWoND/ca9asMdWqVTOnT592lhV3ZCQ5Ofmq2+zdu7f5n//5H+fzbt26ma5duzqf//TTT8bPz8889NBDzrKCvwq2bt1qjDEmPj7eJCQklGYXq7SyfGCdPXvWNGzY0Dz77LMl1uvfv7/p3bu3S9mDDz5Y6Jda9erVXf4KKm6bkszXX39tjPnl52XBggXOOu+++66RZFJTU51lSUlJplmzZsYYY86dO2ckmQ0bNpRqPys7d+Z2zpw5xs/Pz0gyzZo1u+pREebWrtLO7fDhw82QIUPcasfcVhzWjPyOpk6dKn9/f+fj+PHj2r9/v8LDw1W3bl1nvejo6CLbd+jQweV5Xl6epkyZotatWys4OFj+/v5au3atjh8/7lKvTZs2zn97eXmpVq1aat26tbOs4HuFzpw5I0l65JFHtHTpUrVr105PP/20tmzZcm07XkUUNX+/lpWVpd69e6tFixZ6/vnnneUtW7Z0tunVq5ckaf/+/YXmuah5b9SokerUqeNSdvDgQQ0YMEBNmjRRQECAIiIiJKnEeS+Y49/Oe8GcBwcH6+GHH1ZcXJzi4+M1e/ZsnT59ujRvS5VQ0tw++OCD2r17t/7973/rT3/6k/r166cff/xREnNbGRQ1tx999JE+//xzJScnF9uOuf19uf1FeSi7ESNGqF+/fs7nYWFhbrX38/NzeT5jxgzNnj1bycnJat26tfz8/DRmzJhCC6aqV6/u8tzDw8OlrGDxVn5+viSpV69eOnbsmFavXq1169ape/fuGjlypF555RW3xlvVlDR/Fy9e1F133aUbbrhBK1eudHl/V69e7Vxw7Ovr69Y2fzvnkhQfH69GjRpp/vz5CgsLU35+vlq1alXivBfM8W/LCuZckhYuXKjHH39cKSkpWrZsmSZMmKB169bp1ltvdWvMlVFJcxsYGKjAwEDddNNNuvXWW1WzZk2tXLlSAwYMYG4rgaLmdtasWfruu+8UFBTkUve+++5TTEyMNmzYwNz+zggjv6Pg4GAFBwe7lDVr1kwnTpxQenq6MwXv2LGjVP198cUX6tOnj/76179K+jlMHDhwQC1atLjmsdapU0eDBw/W4MGDFRMTo6eeeuq6DyNFzZ/08xGRuLg4ORwOffTRR/Lx8XF5vVGjRoXaNGvWrNA8l2bez507p/3792v+/PmKiYmRJG3evNmd3ShR+/bt1b59e40bN06dOnXSkiVLKt0vtbIobm5/y/x8als5OTmSmNvKoKi5HTt2rIYOHepS1rp1a7366quKj4+XxNz+3ggj5ezSpUs6dOiQ8/mRI0e0Z88eBQcHq2HDhoXq9+jRQ02bNtXgwYP18ssv6+LFi5owYYIkXfVys5tuukkrVqzQli1bVLNmTc2aNUvp6enXHEYmTpyoqKgotWzZUjk5Ofrkk08UGRl5TX1WFu7OX1ZWlnr27KnLly/rnXfeUVZWlrKysiT9HOi8vLyK3M5jjz2m2267TbNmzVJ8fLw+//xzrVmz5qpzXrNmTdWqVUvz5s1TvXr1dPz4cY0dO/Ya9viX/Zw3b57uvfdehYWFaf/+/Tp48KAGDRp0zX3/Ubg7t4cPH9ayZcvUs2dP1alTR99//72mTZsmX19f3X333cVuh7n9/bk7t3Xr1nU5NV6gYcOGaty4cbHbYW4rkO1FK1XN+vXrjaRCj8GDBxfbpuDSXm9vb9O8eXPz8ccfG0kmJSXFGPPLwqbdu3e7tDt37pzp06eP8ff3NyEhIWbChAlm0KBBpk+fPs463bp1M6NHj3Zp16hRI/Pqq6+6lOlXi7emTJliIiMjja+vrwkODjZ9+vQxhw8fLuM7Urm4O3/F1Zdkjhw5UuK25s2bZ+rXr++8RPDFF180devWdb5ecIngb61bt85ERkYah8Nh2rRpYzZs2FDkgudf/7wUjPM///mPs2zhwoXOhXdpaWmmb9++pl69esbb29s0atTITJw40bnSvypwd25PnjxpevXqZUJCQkz16tVNgwYNzMCBA82+ffuuui3m9vdVlt+7v/Xr97kkzG3F8DDGmArMOiiDL774Ql27dtWhQ4fUtGlT28PB72TYsGHat2+fNm3aZHsoKGfMbdXF3JYPTtP8AaxcuVL+/v666aabdOjQIY0ePVpdunQhiFRxr7zyinr06CE/Pz+tWbNGixcv1htvvGF7WCgHzG3VxdxWDMLIH8DFixf1zDPP6Pjx46pdu7ZiY2M1c+ZM28NCBdu+fbtznVCTJk302muvFVpUh8qJua26mNuKwWkaAABgFTc9AwAAVhFGAACAVYQRAABgFWEEAABYRRgBAABWEUYAAIBVhBEAAGAVYQQAAFj1/zyM+QeGuc00AAAAAElFTkSuQmCC\n"
          },
          "metadata": {}
        }
      ],
      "source": [
        "plt.bar(x = bleu_test.keys(), height = bleu_test.values())\n",
        "plt.title(\"BLEU Score with the test set\")\n",
        "plt.ylim((0,1))\n",
        "plt.show()"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 18,
      "id": "LYE8QofL1XC1",
      "metadata": {
        "id": "LYE8QofL1XC1"
      },
      "outputs": [],
      "source": [
        "model.save('/content/drive/MyDrive/Colab Notebooks/Models/french_to_english_translator.h5')"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 19,
      "id": "PoS_noGF1eXf",
      "metadata": {
        "id": "PoS_noGF1eXf",
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 626
        },
        "outputId": "ad5e59c7-b064-4eb0-a85b-5e76d7be1bfb"
      },
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "Setting queue=True in a Colab notebook requires sharing enabled. Setting `share=True` (you can turn this off by setting `share=False` in `launch()` explicitly).\n",
            "\n",
            "Colab notebook detected. To show errors in colab notebook, set debug=True in launch()\n",
            "Running on public URL: https://2ebce967724a96d7c0.gradio.live\n",
            "\n",
            "This share link expires in 72 hours. For free permanent hosting and GPU upgrades, run `gradio deploy` from Terminal to deploy to Spaces (https://huggingface.co/spaces)\n"
          ]
        },
        {
          "output_type": "display_data",
          "data": {
            "text/plain": [
              "<IPython.core.display.HTML object>"
            ],
            "text/html": [
              "<div><iframe src=\"https://2ebce967724a96d7c0.gradio.live\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
            ]
          },
          "metadata": {}
        },
        {
          "output_type": "execute_result",
          "data": {
            "text/plain": []
          },
          "metadata": {},
          "execution_count": 19
        }
      ],
      "source": [
        "import gradio as gr\n",
        "\n",
        "# Load the trained model\n",
        "model = load_model('/content/drive/MyDrive/Colab Notebooks/Models/french_to_english_translator.h5')\n",
        "\n",
        "# Function to translate French to English\n",
        "def translate_french_to_english(french_sentence):\n",
        "    # Clean the input sentence\n",
        "    french_sentence = clean(french_sentence)\n",
        "    # Tokenize and pad the input sentence\n",
        "    input_sequence = encode_sequences(src_tokenizer, src_length, [french_sentence])\n",
        "    # Generate the translation\n",
        "    english_translation = predict_seq(model, tar_tokenizer, input_sequence)\n",
        "    return english_translation\n",
        "\n",
        "# Create a Gradio interface\n",
        "gr.Interface(\n",
        "    fn=translate_french_to_english,\n",
        "    inputs=\"text\",\n",
        "    outputs=\"text\",\n",
        "    title=\"French to English Translator\",\n",
        "    description=\"Translate French sentences to English.\"\n",
        ").launch()"
      ]
    }
  ],
  "metadata": {
    "colab": {
      "provenance": []
    },
    "kaggle": {
      "accelerator": "nvidiaTeslaT4",
      "dataSources": [
        {
          "datasetId": 592212,
          "sourceId": 1067156,
          "sourceType": "datasetVersion"
        }
      ],
      "dockerImageVersionId": 30260,
      "isGpuEnabled": true,
      "isInternetEnabled": true,
      "language": "python",
      "sourceType": "notebook"
    },
    "kernelspec": {
      "display_name": "Python 3 (ipykernel)",
      "language": "python",
      "name": "python3"
    },
    "language_info": {
      "codemirror_mode": {
        "name": "ipython",
        "version": 3
      },
      "file_extension": ".py",
      "mimetype": "text/x-python",
      "name": "python",
      "nbconvert_exporter": "python",
      "pygments_lexer": "ipython3",
      "version": "3.12.2"
    },
    "papermill": {
      "default_parameters": {},
      "duration": 3017.154782,
      "end_time": "2024-01-11T16:19:30.323673",
      "environment_variables": {},
      "exception": null,
      "input_path": "__notebook__.ipynb",
      "output_path": "__notebook__.ipynb",
      "parameters": {},
      "start_time": "2024-01-11T15:29:13.168891",
      "version": "2.3.4"
    }
  },
  "nbformat": 4,
  "nbformat_minor": 5
}