--- tags: autonlp language: en widget: - text: "I love AutoNLP 🤗" datasets: - Kamuuung/autonlp-data-lessons_tagging co2_eq_emissions: 7.968891750522204 --- # Model Trained Using AutoNLP - Problem type: Multi-class Classification - Model ID: 606217261 - CO2 Emissions (in grams): 7.968891750522204 ## Validation Metrics - Loss: 0.989620566368103 - Accuracy: 0.6777163904235728 - Macro F1: 0.6817448899563519 - Micro F1: 0.6777163904235728 - Weighted F1: 0.6590820060806175 - Macro Precision: 0.7028251935864661 - Micro Precision: 0.6777163904235728 - Weighted Precision: 0.6764567648776801 - Macro Recall: 0.6861061576846053 - Micro Recall: 0.6777163904235728 - Weighted Recall: 0.6777163904235728 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/Kamuuung/autonlp-lessons_tagging-606217261 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("Kamuuung/autonlp-lessons_tagging-606217261", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("Kamuuung/autonlp-lessons_tagging-606217261", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```