import json import logging import os import pathlib import re from copy import deepcopy from pathlib import Path from typing import Optional, Tuple, Union, Dict, Any import torch from .constants import OPENAI_DATASET_MEAN, OPENAI_DATASET_STD from .model import CLIP, CustomCLIP, convert_weights_to_lp, convert_to_custom_text_state_dict,\ get_cast_dtype from .openai import load_openai_model from .pretrained import is_pretrained_cfg, get_pretrained_cfg, download_pretrained, list_pretrained_tags_by_model from .transform import image_transform from .tokenizer import HFTokenizer, tokenize from .utils import resize_clip_pos_embed, resize_evaclip_pos_embed, resize_visual_pos_embed, resize_eva_pos_embed _MODEL_CONFIG_PATHS = [Path(__file__).parent / f"model_configs/"] _MODEL_CONFIGS = {} # directory (model_name: config) of model architecture configs def _natural_key(string_): return [int(s) if s.isdigit() else s for s in re.split(r'(\d+)', string_.lower())] def _rescan_model_configs(): global _MODEL_CONFIGS config_ext = ('.json',) config_files = [] for config_path in _MODEL_CONFIG_PATHS: if config_path.is_file() and config_path.suffix in config_ext: config_files.append(config_path) elif config_path.is_dir(): for ext in config_ext: config_files.extend(config_path.glob(f'*{ext}')) for cf in config_files: with open(cf, "r", encoding="utf8") as f: model_cfg = json.load(f) if all(a in model_cfg for a in ('embed_dim', 'vision_cfg', 'text_cfg')): _MODEL_CONFIGS[cf.stem] = model_cfg _MODEL_CONFIGS = dict(sorted(_MODEL_CONFIGS.items(), key=lambda x: _natural_key(x[0]))) _rescan_model_configs() # initial populate of model config registry def list_models(): """ enumerate available model architectures based on config files """ return list(_MODEL_CONFIGS.keys()) def add_model_config(path): """ add model config path or file and update registry """ if not isinstance(path, Path): path = Path(path) _MODEL_CONFIG_PATHS.append(path) _rescan_model_configs() def get_model_config(model_name): if model_name in _MODEL_CONFIGS: return deepcopy(_MODEL_CONFIGS[model_name]) else: return None def get_tokenizer(model_name): config = get_model_config(model_name) tokenizer = HFTokenizer(config['text_cfg']['hf_tokenizer_name']) if 'hf_tokenizer_name' in config['text_cfg'] else tokenize return tokenizer # loading openai CLIP weights when is_openai=True for training def load_state_dict(checkpoint_path: str, map_location: str='cpu', model_key: str='model|module|state_dict', is_openai: bool=False, skip_list: list=[]): if is_openai: model = torch.jit.load(checkpoint_path, map_location="cpu").eval() state_dict = model.state_dict() for key in ["input_resolution", "context_length", "vocab_size"]: state_dict.pop(key, None) else: checkpoint = torch.load(checkpoint_path, map_location=map_location) for mk in model_key.split('|'): if isinstance(checkpoint, dict) and mk in checkpoint: state_dict = checkpoint[mk] break else: state_dict = checkpoint if next(iter(state_dict.items()))[0].startswith('module'): state_dict = {k[7:]: v for k, v in state_dict.items()} for k in skip_list: if k in list(state_dict.keys()): logging.info(f"Removing key {k} from pretrained checkpoint") del state_dict[k] if os.getenv('RoPE') == '1': for k in list(state_dict.keys()): if 'freqs_cos' in k or 'freqs_sin' in k: del state_dict[k] return state_dict def load_checkpoint(model, checkpoint_path, model_key="model|module|state_dict", strict=True): state_dict = load_state_dict(checkpoint_path, model_key=model_key, is_openai=False) # detect old format and make compatible with new format if 'positional_embedding' in state_dict and not hasattr(model, 'positional_embedding'): state_dict = convert_to_custom_text_state_dict(state_dict) if 'text.logit_scale' in state_dict and hasattr(model, 'logit_scale'): state_dict['logit_scale'] = state_dict['text.logit_scale'] del state_dict['text.logit_scale'] # resize_clip_pos_embed for CLIP and open CLIP if 'visual.positional_embedding' in state_dict: resize_clip_pos_embed(state_dict, model) # specified to eva_vit_model elif 'visual.pos_embed' in state_dict: resize_evaclip_pos_embed(state_dict, model) # resize_clip_pos_embed(state_dict, model) incompatible_keys = model.load_state_dict(state_dict, strict=strict) logging.info(f"incompatible_keys.missing_keys: {incompatible_keys.missing_keys}") return incompatible_keys def load_clip_visual_state_dict(checkpoint_path: str, map_location: str='cpu', is_openai: bool=False, skip_list:list=[]): state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) for k in list(state_dict.keys()): if not k.startswith('visual.'): del state_dict[k] for k in list(state_dict.keys()): if k.startswith('visual.'): new_k = k[7:] state_dict[new_k] = state_dict[k] del state_dict[k] return state_dict def load_clip_text_state_dict(checkpoint_path: str, map_location: str='cpu', is_openai: bool=False, skip_list:list=[]): state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) for k in list(state_dict.keys()): if k.startswith('visual.'): del state_dict[k] return state_dict def get_pretrained_tag(pretrained_model): pretrained_model = pretrained_model.lower() if "laion" in pretrained_model or "open_clip" in pretrained_model: return "open_clip" elif "openai" in pretrained_model: return "clip" elif "eva" in pretrained_model and "clip" in pretrained_model: return "eva_clip" else: return "other" def load_pretrained_checkpoint( model, visual_checkpoint_path, text_checkpoint_path, strict=True, visual_model=None, text_model=None, model_key="model|module|state_dict", skip_list=[]): visual_tag = get_pretrained_tag(visual_model) text_tag = get_pretrained_tag(text_model) logging.info(f"num of model state_dict keys: {len(model.state_dict().keys())}") visual_incompatible_keys, text_incompatible_keys = None, None if visual_checkpoint_path: if visual_tag == "eva_clip" or visual_tag == "open_clip": visual_state_dict = load_clip_visual_state_dict(visual_checkpoint_path, is_openai=False, skip_list=skip_list) elif visual_tag == "clip": visual_state_dict = load_clip_visual_state_dict(visual_checkpoint_path, is_openai=True, skip_list=skip_list) else: visual_state_dict = load_state_dict(visual_checkpoint_path, model_key=model_key, is_openai=False, skip_list=skip_list) # resize_clip_pos_embed for CLIP and open CLIP if 'positional_embedding' in visual_state_dict: resize_visual_pos_embed(visual_state_dict, model) # specified to EVA model elif 'pos_embed' in visual_state_dict: resize_eva_pos_embed(visual_state_dict, model) visual_incompatible_keys = model.visual.load_state_dict(visual_state_dict, strict=strict) logging.info(f"num of loaded visual_state_dict keys: {len(visual_state_dict.keys())}") logging.info(f"visual_incompatible_keys.missing_keys: {visual_incompatible_keys.missing_keys}") if text_checkpoint_path: if text_tag == "eva_clip" or text_tag == "open_clip": text_state_dict = load_clip_text_state_dict(text_checkpoint_path, is_openai=False, skip_list=skip_list) elif text_tag == "clip": text_state_dict = load_clip_text_state_dict(text_checkpoint_path, is_openai=True, skip_list=skip_list) else: text_state_dict = load_state_dict(visual_checkpoint_path, model_key=model_key, is_openai=False, skip_list=skip_list) text_incompatible_keys = model.text.load_state_dict(text_state_dict, strict=strict) logging.info(f"num of loaded text_state_dict keys: {len(text_state_dict.keys())}") logging.info(f"text_incompatible_keys.missing_keys: {text_incompatible_keys.missing_keys}") return visual_incompatible_keys, text_incompatible_keys def create_model( model_name: str, pretrained: Optional[str] = None, precision: str = 'fp32', device: Union[str, torch.device] = 'cpu', jit: bool = False, force_quick_gelu: bool = False, force_custom_clip: bool = False, force_patch_dropout: Optional[float] = None, pretrained_image: str = '', pretrained_text: str = '', pretrained_hf: bool = True, pretrained_visual_model: str = None, pretrained_text_model: str = None, cache_dir: Optional[str] = None, skip_list: list = [], ): model_name = model_name.replace('/', '-') # for callers using old naming with / in ViT names if isinstance(device, str): device = torch.device(device) if pretrained and pretrained.lower() == 'openai': logging.info(f'Loading pretrained {model_name} from OpenAI.') model = load_openai_model( model_name, precision=precision, device=device, jit=jit, cache_dir=cache_dir, ) else: model_cfg = get_model_config(model_name) if model_cfg is not None: logging.info(f'Loaded {model_name} model config.') else: logging.error(f'Model config for {model_name} not found; available models {list_models()}.') raise RuntimeError(f'Model config for {model_name} not found.') if 'rope' in model_cfg.get('vision_cfg', {}): if model_cfg['vision_cfg']['rope']: os.environ['RoPE'] = "1" else: os.environ['RoPE'] = "0" if force_quick_gelu: # override for use of QuickGELU on non-OpenAI transformer models model_cfg["quick_gelu"] = True if force_patch_dropout is not None: # override the default patch dropout value model_cfg['vision_cfg']["patch_dropout"] = force_patch_dropout cast_dtype = get_cast_dtype(precision) custom_clip = model_cfg.pop('custom_text', False) or force_custom_clip or ('hf_model_name' in model_cfg['text_cfg']) if custom_clip: if 'hf_model_name' in model_cfg.get('text_cfg', {}): model_cfg['text_cfg']['hf_model_pretrained'] = pretrained_hf model = CustomCLIP(**model_cfg, cast_dtype=cast_dtype) else: model = CLIP(**model_cfg, cast_dtype=cast_dtype) pretrained_cfg = {} if pretrained: checkpoint_path = '' pretrained_cfg = get_pretrained_cfg(model_name, pretrained) if pretrained_cfg: checkpoint_path = download_pretrained(pretrained_cfg, cache_dir=cache_dir) elif os.path.exists(pretrained): checkpoint_path = pretrained if checkpoint_path: logging.info(f'Loading pretrained {model_name} weights ({pretrained}).') load_checkpoint(model, checkpoint_path, model_key="model|module|state_dict", strict=False ) else: error_str = ( f'Pretrained weights ({pretrained}) not found for model {model_name}.' f'Available pretrained tags ({list_pretrained_tags_by_model(model_name)}.') logging.warning(error_str) raise RuntimeError(error_str) else: visual_checkpoint_path = '' text_checkpoint_path = '' if pretrained_image: pretrained_visual_model = pretrained_visual_model.replace('/', '-') # for callers using old naming with / in ViT names pretrained_image_cfg = get_pretrained_cfg(pretrained_visual_model, pretrained_image) if 'timm_model_name' in model_cfg.get('vision_cfg', {}): # pretrained weight loading for timm models set via vision_cfg model_cfg['vision_cfg']['timm_model_pretrained'] = True elif pretrained_image_cfg: visual_checkpoint_path = download_pretrained(pretrained_image_cfg, cache_dir=cache_dir) elif os.path.exists(pretrained_image): visual_checkpoint_path = pretrained_image else: logging.warning(f'Pretrained weights ({visual_checkpoint_path}) not found for model {model_name}.visual.') raise RuntimeError(f'Pretrained weights ({visual_checkpoint_path}) not found for model {model_name}.visual.') if pretrained_text: pretrained_text_model = pretrained_text_model.replace('/', '-') # for callers using old naming with / in ViT names pretrained_text_cfg = get_pretrained_cfg(pretrained_text_model, pretrained_text) if pretrained_image_cfg: text_checkpoint_path = download_pretrained(pretrained_text_cfg, cache_dir=cache_dir) elif os.path.exists(pretrained_text): text_checkpoint_path = pretrained_text else: logging.warning(f'Pretrained weights ({text_checkpoint_path}) not found for model {model_name}.text.') raise RuntimeError(f'Pretrained weights ({text_checkpoint_path}) not found for model {model_name}.text.') if visual_checkpoint_path: logging.info(f'Loading pretrained {model_name}.visual weights ({visual_checkpoint_path}).') if text_checkpoint_path: logging.info(f'Loading pretrained {model_name}.text weights ({text_checkpoint_path}).') if visual_checkpoint_path or text_checkpoint_path: load_pretrained_checkpoint( model, visual_checkpoint_path, text_checkpoint_path, strict=False, visual_model=pretrained_visual_model, text_model=pretrained_text_model, model_key="model|module|state_dict", skip_list=skip_list ) if "fp16" in precision or "bf16" in precision: logging.info(f'convert precision to {precision}') model = model.to(torch.bfloat16) if 'bf16' in precision else model.to(torch.float16) model.to(device=device) # set image / mean metadata from pretrained_cfg if available, or use default model.visual.image_mean = pretrained_cfg.get('mean', None) or OPENAI_DATASET_MEAN model.visual.image_std = pretrained_cfg.get('std', None) or OPENAI_DATASET_STD if jit: model = torch.jit.script(model) return model def create_model_and_transforms( model_name: str, pretrained: Optional[str] = None, precision: str = 'fp32', device: Union[str, torch.device] = 'cpu', jit: bool = False, force_quick_gelu: bool = False, force_custom_clip: bool = False, force_patch_dropout: Optional[float] = None, pretrained_image: str = '', pretrained_text: str = '', pretrained_hf: bool = True, pretrained_visual_model: str = None, pretrained_text_model: str = None, image_mean: Optional[Tuple[float, ...]] = None, image_std: Optional[Tuple[float, ...]] = None, cache_dir: Optional[str] = None, skip_list: list = [], ): model = create_model( model_name, pretrained, precision=precision, device=device, jit=jit, force_quick_gelu=force_quick_gelu, force_custom_clip=force_custom_clip, force_patch_dropout=force_patch_dropout, pretrained_image=pretrained_image, pretrained_text=pretrained_text, pretrained_hf=pretrained_hf, pretrained_visual_model=pretrained_visual_model, pretrained_text_model=pretrained_text_model, cache_dir=cache_dir, skip_list=skip_list, ) image_mean = image_mean or getattr(model.visual, 'image_mean', None) image_std = image_std or getattr(model.visual, 'image_std', None) preprocess_train = image_transform( model.visual.image_size, is_train=True, mean=image_mean, std=image_std ) preprocess_val = image_transform( model.visual.image_size, is_train=False, mean=image_mean, std=image_std ) return model, preprocess_train, preprocess_val def create_model_from_pretrained( model_name: str, pretrained: str, precision: str = 'fp32', device: Union[str, torch.device] = 'cpu', jit: bool = False, force_quick_gelu: bool = False, force_custom_clip: bool = False, force_patch_dropout: Optional[float] = None, return_transform: bool = True, image_mean: Optional[Tuple[float, ...]] = None, image_std: Optional[Tuple[float, ...]] = None, cache_dir: Optional[str] = None, is_frozen: bool = False, ): if not is_pretrained_cfg(model_name, pretrained) and not os.path.exists(pretrained): raise RuntimeError( f'{pretrained} is not a valid pretrained cfg or checkpoint for {model_name}.' f' Use open_clip.list_pretrained() to find one.') model = create_model( model_name, pretrained, precision=precision, device=device, jit=jit, force_quick_gelu=force_quick_gelu, force_custom_clip=force_custom_clip, force_patch_dropout=force_patch_dropout, cache_dir=cache_dir, ) if is_frozen: for param in model.parameters(): param.requires_grad = False if not return_transform: return model image_mean = image_mean or getattr(model.visual, 'image_mean', None) image_std = image_std or getattr(model.visual, 'image_std', None) preprocess = image_transform( model.visual.image_size, is_train=False, mean=image_mean, std=image_std ) return model, preprocess