File size: 8,242 Bytes
52068d0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 |
---
license: llama2
datasets:
- ACE05
- bc5cdr
- conll2003
- ncbi_disease
- conll2012_ontonotesv5
- rams
- tacred
- wnut_17
language:
- en
metrics:
- f1
pipeline_tag: text-generation
tags:
- code
- text-generation-inference
- Information Extraction
- IE
- Named Entity Recogniton
- Event Extraction
- Relation Extraction
- LLaMA
---
<p align="center">
<br>
<img src="https://github.com/hitz-zentroa/GoLLIE/raw/main/assets/GoLLIE.png" style="height: 250px;">
<h2 align="center"><b>G</b>uideline f<b>o</b>llowing <b>L</b>arge <b>L</b>anguage Model for <b>I</b>nformation <b>E</b>xtraction</h2>
<br>
# Model Card for GoLLIE 13B
<p align="justify">
We present GoLLIE, a Large Language Model trained to follow annotation guidelines. GoLLIE outperforms previous approaches on zero-shot Information Extraction and allows the user to perform inferences with annotation schemas defined on the fly. Different from previous approaches, GoLLIE is able to follow detailed definitions and does not only rely on the knowledge already encoded in the LLM.
- 💻 Code: [https://github.com/osainz59/CoLLIE/](https://github.com/hitz-zentroa/GoLLIE)
- 📒 Blog Post: [GoLLIE: Guideline-following Large Language Model for Information Extraction](https://hitz-zentroa.github.io/GoLLIE/)
- 📖 Paper: [GoLLIE: Annotation Guidelines improve Zero-Shot Information-Extraction](https://arxiv.org/abs/2310.03668)
- 🐕 GoLLIE Colection in the 🤗HuggingFace Hub: [HiTZ/gollie](https://huggingface.co/collections/HiTZ/gollie-651bf19ee315e8a224aacc4f)
- 🚀 Example Jupyter Notebooks: [GoLLIE Notebooks](https://github.com/hitz-zentroa/GoLLIE/tree/main/notebooks)
</p>
<p align="center">
<img src="https://github.com/hitz-zentroa/GoLLIE/raw/main/assets/zero_shot_results.png">
</p>
### Model Description
- **Developed by:** [Oscar Sainz](https://osainz59.github.io/), [Iker García-Ferrero](https://ikergarcia1996.github.io/Iker-Garcia-Ferrero/), [Rodrigo Agerri](https://ragerri.github.io/), [Oier Lopez de Lacalle](https://oierldl.github.io/), [German Rigau](https://adimen.si.ehu.es/~rigau/) and [Eneko Agirre](https://eagirre.github.io/)
- **Institution:** [HiTZ Basque Center for Language Technology](http://www.hitz.eus/) - [Ixa](https://www.ixa.eus/node/2?language=en), [University of the Basque Country UPV/EHU](https://www.ehu.eus/en/en-home)
- **Model type:** Text Generation
- **Language(s) (NLP):** English
- **License:** LLaMA2 License for the base and merged model. Apache 2.0 for pre-trained LoRA Adapters
- **Finetuned from model:** CODE-LLaMA2
## Schema definition and inference example
The labels are represented as Python classes, and the guidelines or instructions are introduced as docstrings. The model start generating after the `result = [` line.
```Python
# Entity definitions
@dataclass
class Launcher(Template):
"""Refers to a vehicle designed primarily to transport payloads from the Earth's
surface to space. Launchers can carry various payloads, including satellites,
crewed spacecraft, and cargo, into various orbits or even beyond Earth's orbit.
They are usually multi-stage vehicles that use rocket engines for propulsion."""
mention: str
"""
The name of the launcher vehicle.
Such as: "Sturn V", "Atlas V", "Soyuz", "Ariane 5"
"""
space_company: str # The company that operates the launcher. Such as: "Blue origin", "ESA", "Boeing", "ISRO", "Northrop Grumman", "Arianespace"
crew: List[str] # Names of the crew members boarding the Launcher. Such as: "Neil Armstrong", "Michael Collins", "Buzz Aldrin"
@dataclass
class Mission(Template):
"""Any planned or accomplished journey beyond Earth's atmosphere with specific objectives,
either crewed or uncrewed. It includes missions to satellites, the International
Space Station (ISS), other celestial bodies, and deep space."""
mention: str
"""
The name of the mission.
Such as: "Apollo 11", "Artemis", "Mercury"
"""
date: str # The start date of the mission
departure: str # The place from which the vehicle will be launched. Such as: "Florida", "Houston", "French Guiana"
destination: str # The place or planet to which the launcher will be sent. Such as "Moon", "low-orbit", "Saturn"
# This is the text to analyze
text = (
"The Ares 3 mission to Mars is scheduled for 2032. The Starship rocket build by SpaceX will take off from Boca Chica,"
"carrying the astronauts Max Rutherford, Elena Soto, and Jake Martinez."
)
# The annotation instances that take place in the text above are listed here
result = [
Mission(mention='Ares 3', date='2032', departure='Boca Chica', destination='Mars'),
Launcher(mention='Starship', space_company='SpaceX', crew=['Max Rutherford', 'Elena Soto', 'Jake Martinez'])
]
```
## How to Get Started with the Model
Please read our [🚀 Example Jupyter Notebooks](https://github.com/hitz-zentroa/GoLLIE/tree/main/notebooks) to get started with GoLLIE.
The best way to load the model is using our custom `load_model` fuction. However, you can also load them using the AutoModelForCausalLM class.
**Important**: Our flash attention implementation has small numerical differences compared to the attention implementation in Huggingface.
You must use the flag `trust_remote_code=True` or you will get inferior results. Flash attention requires an available CUDA GPU. Running GOLLIE
pre-trained models on a CPU is not supported. We plan to address this in future releases. First, install flash attention 2:
```bash
pip install flash-attn --no-build-isolation
pip install git+https://github.com/HazyResearch/flash-attention.git#subdirectory=csrc/rotary
```
Then you can load the model using
```python
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("HiTZ/GoLLIE-7B")
model = AutoModelForCausalLM.from_pretrained("HiTZ/GoLLIE-7B", trust_remote_code=True, torch_dtype=torch.bfloat16)
model.to("cuda")
```
Read our [🚀 Example Jupyter Notebooks](https://github.com/hitz-zentroa/GoLLIE/tree/main/notebooks) to learn how to easily define guidelines, generate model inputs and parse the output!
### Training Data
This is the list of task used for training and evaluating GoLLIE. However, as demonstrated in the 🚀 [Create Custom Task notebook](https://github.com/hitz-zentroa/GoLLIE/blob/main/notebooks/Create%20Custom%20Task.ipynb) GoLLIE can perform a wide range of unseen tasks.
For more info, read our [📖Paper](https://arxiv.org/abs/2310.03668).
<p align="center">
<img src="https://github.com/hitz-zentroa/GoLLIE/raw/main/assets/datasets.png">
</p>
## Evaluation
| Model | Supervised average F1 | Zero-shot average F1 | 🤗HuggingFace Hub |
|---|:---------------------:|:--------------------:|:---------------------------------------------------------:|
| GoLLIE-7B | 73.0 | 55.3 | [HiTZ/GoLLIE-7B](https://huggingface.co/HiTZ/GoLLIE-7B) |
| GoLLIE-13B | 73.9 | 56.0 | [HiTZ/GoLLIE-13B](https://huggingface.co/HiTZ/GoLLIE-13B) |
| GoLLIE-34B | **75.0** | **57.2** | [HiTZ/GoLLIE-34B](https://huggingface.co/HiTZ/GoLLIE-34B) |
## Environmental Impact
| Model | Hardware | FLOPs | Time (h) | CO<sup>2</sup>eq (kg) |
|----------------|-------------------|---------------------------|-------------------|-------------------------------------|
| GoLLIE 7B | 1xA100 | 11.9e<sup>18</sup> | 44.5 | 1.57 |
| GoLLIE 13B | 1xA100 | 22.7e<sup>18</sup> | 79.5 | 2.80 |
| GoLLIE 34B | 2xA100 | 55.8e<sup>18</sup> | 94.6 | 6.67 |
## Citation
```
@misc{sainz2023gollie,
title={GoLLIE: Annotation Guidelines improve Zero-Shot Information-Extraction},
author={Oscar Sainz and Iker García-Ferrero and Rodrigo Agerri and Oier Lopez de Lacalle and German Rigau and Eneko Agirre},
year={2023},
eprint={2310.03668},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
``` |