File size: 1,654 Bytes
ef80c2f
ac71c0f
 
ef80c2f
 
 
ac71c0f
 
 
 
92dd310
ef80c2f
 
ac71c0f
 
 
92dd310
ac71c0f
 
 
 
 
92dd310
ac71c0f
92dd310
ef80c2f
 
 
 
 
 
 
ac71c0f
 
 
 
 
 
ef80c2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
---
language:
- en
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- OpenTable
metrics:
- accuracy
base_model: bert-base-uncased
model-index:
- name: bert-base-uncased.CEBaB_confounding.food_service_positive.absa.5-class.seed_44
  results:
  - task:
      type: text-classification
      name: Text Classification
    dataset:
      name: OpenTable OPENTABLE-ABSA
      type: OpenTable
      args: opentable-absa
    metrics:
    - type: accuracy
      value: 0.799265605875153
      name: Accuracy
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# bert-base-uncased.CEBaB_confounding.food_service_positive.absa.5-class.seed_44

This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the OpenTable OPENTABLE-ABSA dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8139
- Accuracy: 0.7993
- Macro-f1: 0.7970
- Weighted-macro-f1: 0.7996

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 44
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5.0

### Training results



### Framework versions

- Transformers 4.18.0
- Pytorch 1.10.2+cu102
- Datasets 2.5.2
- Tokenizers 0.12.1