File size: 2,500 Bytes
2b61421 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 |
---
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_trainer
datasets:
- emotion
metrics:
- accuracy
- f1
model-index:
- name: distilbert-finetuned
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: emotion
type: emotion
config: split
split: validation
args: split
metrics:
- name: Accuracy
type: accuracy
value: 0.9385
- name: F1
type: f1
value: 0.9383538787245842
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-finetuned
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1775
- Accuracy: 0.9385
- F1: 0.9384
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| No log | 1.0 | 250 | 0.2451 | 0.9225 | 0.9227 |
| 0.4827 | 2.0 | 500 | 0.1655 | 0.934 | 0.9335 |
| 0.4827 | 3.0 | 750 | 0.1558 | 0.9365 | 0.9372 |
| 0.1191 | 4.0 | 1000 | 0.1482 | 0.9375 | 0.9374 |
| 0.1191 | 5.0 | 1250 | 0.1599 | 0.9365 | 0.9366 |
| 0.0775 | 6.0 | 1500 | 0.1539 | 0.9375 | 0.9378 |
| 0.0775 | 7.0 | 1750 | 0.1657 | 0.937 | 0.9366 |
| 0.0525 | 8.0 | 2000 | 0.1688 | 0.9385 | 0.9385 |
| 0.0525 | 9.0 | 2250 | 0.1811 | 0.9405 | 0.9406 |
| 0.0383 | 10.0 | 2500 | 0.1775 | 0.9385 | 0.9384 |
### Framework versions
- Transformers 4.41.1
- Pytorch 2.3.0+cu118
- Datasets 2.19.1
- Tokenizers 0.19.1
|