--- library_name: transformers license: mit base_model: facebook/w2v-bert-2.0 tags: - generated_from_trainer metrics: - wer model-index: - name: w2v-bert-2.0-lg-cv-5hr-v1 results: [] --- # w2v-bert-2.0-lg-cv-5hr-v1 This model is a fine-tuned version of [facebook/w2v-bert-2.0](https://huggingface.co/facebook/w2v-bert-2.0) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.8566 - Model Preparation Time: 0.0165 - Wer: 0.9775 - Cer: 0.8923 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.01 - num_epochs: 100 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Model Preparation Time | Wer | Cer | |:-------------:|:-------:|:----:|:---------------:|:----------------------:|:------:|:------:| | 9.9607 | 0.9948 | 95 | 6.8754 | 0.0165 | 1.0 | 1.0 | | 5.2586 | 2.0 | 191 | 4.0569 | 0.0165 | 1.0 | 1.0 | | 3.4197 | 2.9948 | 286 | 3.0508 | 0.0165 | 1.0 | 1.0 | | 2.9792 | 4.0 | 382 | 2.9586 | 0.0165 | 1.0 | 1.0 | | 2.9646 | 4.9948 | 477 | 2.9354 | 0.0165 | 1.0 | 1.0 | | 2.9169 | 6.0 | 573 | 2.9220 | 0.0165 | 1.0 | 1.0 | | 2.9372 | 6.9948 | 668 | 2.9116 | 0.0165 | 1.0 | 1.0 | | 2.8971 | 8.0 | 764 | 2.8998 | 0.0165 | 1.0 | 0.9811 | | 2.918 | 8.9948 | 859 | 2.8893 | 0.0165 | 0.9983 | 0.9652 | | 2.8795 | 10.0 | 955 | 2.8804 | 0.0165 | 0.9985 | 0.9534 | | 2.9006 | 10.9948 | 1050 | 2.8683 | 0.0165 | 1.0 | 0.9048 | | 2.8598 | 12.0 | 1146 | 2.8554 | 0.0165 | 1.0 | 0.9067 | | 2.8776 | 12.9948 | 1241 | 2.8417 | 0.0165 | 1.0 | 0.8954 | | 2.8393 | 14.0 | 1337 | 2.8407 | 0.0165 | 0.9970 | 0.9074 | | 2.8637 | 14.9948 | 1432 | 2.8304 | 0.0165 | 0.9787 | 0.8824 | | 2.8264 | 16.0 | 1528 | 2.8257 | 0.0165 | 0.9776 | 0.8934 | | 2.846 | 16.9948 | 1623 | 2.8045 | 0.0165 | 1.0 | 0.8653 | | 2.8001 | 18.0 | 1719 | 2.7907 | 0.0165 | 1.0022 | 0.8459 | | 2.8103 | 18.9948 | 1814 | 2.7686 | 0.0165 | 0.9991 | 0.8579 | | 2.7683 | 20.0 | 1910 | 2.7518 | 0.0165 | 0.9991 | 0.8534 | | 2.7903 | 20.9948 | 2005 | 2.7481 | 0.0165 | 0.9980 | 0.8568 | | 2.7561 | 22.0 | 2101 | 2.7468 | 0.0165 | 0.9991 | 0.8478 | | 2.782 | 22.9948 | 2196 | 2.7383 | 0.0165 | 0.9978 | 0.8497 | | 2.7473 | 24.0 | 2292 | 2.7345 | 0.0165 | 0.9993 | 0.8492 | | 2.771 | 24.9948 | 2387 | 2.7175 | 0.0165 | 0.9970 | 0.8258 | | 2.7049 | 26.0 | 2483 | 2.6822 | 0.0165 | 1.0260 | 0.7733 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.1.0+cu118 - Datasets 2.20.0 - Tokenizers 0.19.1