File size: 1,831 Bytes
cb1ad45 e6cbaa0 b8eab9c cb1ad45 39b096f cb1ad45 39b096f cb1ad45 39b096f cb1ad45 e6cbaa0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 |
---
base_model: gpt2
tags:
- generated_from_trainer
model-index:
- name: midi_model_2
results: []
datasets:
- TristanBehrens/js-fakes-4bars
widget:
- text: "PIECE_START"
- text: "PIECE_START STYLE=JSFAKES GENRE=JSFAKES TRACK_START INST=48 BAR_START NOTE_ON=32"
- text: "PIECE_START STYLE=JSFAKES GENRE=JSFAKES TRACK_START INST=48 BAR_START NOTE_ON=64"
---
# midi_model_2
This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the js-fakes-4bars dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8079
## Model description
This model generates encoded midi that follows the format of [Magenta](https://github.com/magenta/note-seq).
## Intended uses & limitations
For generating basic encoded midi.
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 4
- eval_batch_size: 2
- seed: 1
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.01
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 2.3022 | 0.11 | 100 | 1.7587 |
| 1.5783 | 0.22 | 200 | 1.2644 |
| 1.1475 | 0.33 | 300 | 1.0365 |
| 1.0012 | 0.44 | 400 | 0.9359 |
| 0.936 | 0.55 | 500 | 0.8844 |
| 0.8895 | 0.66 | 600 | 0.8532 |
| 0.8714 | 0.77 | 700 | 0.8273 |
| 0.8521 | 0.88 | 800 | 0.8112 |
| 0.8455 | 1.0 | 900 | 0.8079 |
### Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0 |