Kayvane commited on
Commit
9f38c77
1 Parent(s): aef2e91

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +13 -13
README.md CHANGED
@@ -22,16 +22,16 @@ model-index:
22
  metrics:
23
  - name: Accuracy
24
  type: accuracy
25
- value: 0.7935375363131338
26
  - name: F1
27
  type: f1
28
- value: 0.7782286513484494
29
  - name: Recall
30
  type: recall
31
- value: 0.7935375363131338
32
  - name: Precision
33
  type: precision
34
- value: 0.7838508007361574
35
  ---
36
 
37
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -41,11 +41,11 @@ should probably proofread and complete it, then remove this comment. -->
41
 
42
  This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the consumer-finance-complaints dataset.
43
  It achieves the following results on the evaluation set:
44
- - Loss: 0.6228
45
- - Accuracy: 0.7935
46
- - F1: 0.7782
47
- - Recall: 0.7935
48
- - Precision: 0.7839
49
 
50
  ## Model description
51
 
@@ -64,7 +64,7 @@ More information needed
64
  ### Training hyperparameters
65
 
66
  The following hyperparameters were used during training:
67
- - learning_rate: 0.00019154628432502008
68
  - train_batch_size: 32
69
  - eval_batch_size: 32
70
  - seed: 42
@@ -78,9 +78,9 @@ The following hyperparameters were used during training:
78
 
79
  | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Recall | Precision |
80
  |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:------:|:---------:|
81
- | 0.8624 | 0.61 | 1500 | 0.8468 | 0.7521 | 0.7215 | 0.7521 | 0.7083 |
82
- | 0.743 | 1.22 | 3000 | 0.7668 | 0.7651 | 0.7417 | 0.7651 | 0.7383 |
83
- | 0.6135 | 1.83 | 4500 | 0.6228 | 0.7935 | 0.7782 | 0.7935 | 0.7839 |
84
 
85
 
86
  ### Framework versions
 
22
  metrics:
23
  - name: Accuracy
24
  type: accuracy
25
+ value: 0.8279904184292339
26
  - name: F1
27
  type: f1
28
+ value: 0.8236604095677945
29
  - name: Recall
30
  type: recall
31
+ value: 0.8279904184292339
32
  - name: Precision
33
  type: precision
34
+ value: 0.8235526237070518
35
  ---
36
 
37
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
41
 
42
  This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the consumer-finance-complaints dataset.
43
  It achieves the following results on the evaluation set:
44
+ - Loss: 0.5351
45
+ - Accuracy: 0.8280
46
+ - F1: 0.8237
47
+ - Recall: 0.8280
48
+ - Precision: 0.8236
49
 
50
  ## Model description
51
 
 
64
  ### Training hyperparameters
65
 
66
  The following hyperparameters were used during training:
67
+ - learning_rate: 9.027176214786854e-05
68
  - train_batch_size: 32
69
  - eval_batch_size: 32
70
  - seed: 42
 
78
 
79
  | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Recall | Precision |
80
  |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:------:|:---------:|
81
+ | 0.7756 | 0.61 | 1500 | 0.7411 | 0.7647 | 0.7375 | 0.7647 | 0.7606 |
82
+ | 0.5804 | 1.22 | 3000 | 0.6140 | 0.8088 | 0.8052 | 0.8088 | 0.8077 |
83
+ | 0.5008 | 1.83 | 4500 | 0.5351 | 0.8280 | 0.8237 | 0.8280 | 0.8236 |
84
 
85
 
86
  ### Framework versions