|
import torch |
|
import itertools |
|
from util.image_pool import ImagePool |
|
from .base_model import BaseModel |
|
from . import networks |
|
|
|
|
|
class CycleGANModel(BaseModel): |
|
""" |
|
This class implements the CycleGAN model, for learning image-to-image translation without paired data. |
|
|
|
The model training requires '--dataset_mode unaligned' dataset. |
|
By default, it uses a '--netG resnet_9blocks' ResNet generator, |
|
a '--netD basic' discriminator (PatchGAN introduced by pix2pix), |
|
and a least-square GANs objective ('--gan_mode lsgan'). |
|
|
|
CycleGAN paper: https://arxiv.org/pdf/1703.10593.pdf |
|
""" |
|
@staticmethod |
|
def modify_commandline_options(parser, is_train=True): |
|
"""Add new dataset-specific options, and rewrite default values for existing options. |
|
|
|
Parameters: |
|
parser -- original option parser |
|
is_train (bool) -- whether training phase or test phase. You can use this flag to add training-specific or test-specific options. |
|
|
|
Returns: |
|
the modified parser. |
|
|
|
For CycleGAN, in addition to GAN losses, we introduce lambda_A, lambda_B, and lambda_identity for the following losses. |
|
A (source domain), B (target domain). |
|
Generators: G_A: A -> B; G_B: B -> A. |
|
Discriminators: D_A: G_A(A) vs. B; D_B: G_B(B) vs. A. |
|
Forward cycle loss: lambda_A * ||G_B(G_A(A)) - A|| (Eqn. (2) in the paper) |
|
Backward cycle loss: lambda_B * ||G_A(G_B(B)) - B|| (Eqn. (2) in the paper) |
|
Identity loss (optional): lambda_identity * (||G_A(B) - B|| * lambda_B + ||G_B(A) - A|| * lambda_A) (Sec 5.2 "Photo generation from paintings" in the paper) |
|
Dropout is not used in the original CycleGAN paper. |
|
""" |
|
parser.set_defaults(no_dropout=True) |
|
if is_train: |
|
parser.add_argument('--lambda_A', type=float, default=10.0, help='weight for cycle loss (A -> B -> A)') |
|
parser.add_argument('--lambda_B', type=float, default=10.0, help='weight for cycle loss (B -> A -> B)') |
|
parser.add_argument('--lambda_identity', type=float, default=0.5, help='use identity mapping. Setting lambda_identity other than 0 has an effect of scaling the weight of the identity mapping loss. For example, if the weight of the identity loss should be 10 times smaller than the weight of the reconstruction loss, please set lambda_identity = 0.1') |
|
|
|
return parser |
|
|
|
def __init__(self, opt): |
|
"""Initialize the CycleGAN class. |
|
|
|
Parameters: |
|
opt (Option class)-- stores all the experiment flags; needs to be a subclass of BaseOptions |
|
""" |
|
BaseModel.__init__(self, opt) |
|
|
|
self.loss_names = ['D_A', 'G_A', 'cycle_A', 'idt_A', 'D_B', 'G_B', 'cycle_B', 'idt_B'] |
|
|
|
visual_names_A = ['real_A', 'fake_B', 'rec_A'] |
|
visual_names_B = ['real_B', 'fake_A', 'rec_B'] |
|
if self.isTrain and self.opt.lambda_identity > 0.0: |
|
visual_names_A.append('idt_B') |
|
visual_names_B.append('idt_A') |
|
|
|
self.visual_names = visual_names_A + visual_names_B |
|
|
|
if self.isTrain: |
|
self.model_names = ['G_A', 'G_B', 'D_A', 'D_B'] |
|
else: |
|
self.model_names = ['G_A', 'G_B'] |
|
|
|
|
|
|
|
|
|
self.netG_A = networks.define_G(opt.input_nc, opt.output_nc, opt.ngf, opt.netG, opt.norm, |
|
not opt.no_dropout, opt.init_type, opt.init_gain, self.gpu_ids) |
|
self.netG_B = networks.define_G(opt.output_nc, opt.input_nc, opt.ngf, opt.netG, opt.norm, |
|
not opt.no_dropout, opt.init_type, opt.init_gain, self.gpu_ids) |
|
|
|
if self.isTrain: |
|
self.netD_A = networks.define_D(opt.output_nc, opt.ndf, opt.netD, |
|
opt.n_layers_D, opt.norm, opt.init_type, opt.init_gain, self.gpu_ids) |
|
self.netD_B = networks.define_D(opt.input_nc, opt.ndf, opt.netD, |
|
opt.n_layers_D, opt.norm, opt.init_type, opt.init_gain, self.gpu_ids) |
|
|
|
if self.isTrain: |
|
if opt.lambda_identity > 0.0: |
|
assert(opt.input_nc == opt.output_nc) |
|
self.fake_A_pool = ImagePool(opt.pool_size) |
|
self.fake_B_pool = ImagePool(opt.pool_size) |
|
|
|
self.criterionGAN = networks.GANLoss(opt.gan_mode).to(self.device) |
|
self.criterionCycle = torch.nn.L1Loss() |
|
self.criterionIdt = torch.nn.L1Loss() |
|
|
|
self.optimizer_G = torch.optim.Adam(itertools.chain(self.netG_A.parameters(), self.netG_B.parameters()), lr=opt.lr, betas=(opt.beta1, 0.999)) |
|
self.optimizer_D = torch.optim.Adam(itertools.chain(self.netD_A.parameters(), self.netD_B.parameters()), lr=opt.lr, betas=(opt.beta1, 0.999)) |
|
self.optimizers.append(self.optimizer_G) |
|
self.optimizers.append(self.optimizer_D) |
|
|
|
def set_input(self, input): |
|
"""Unpack input data from the dataloader and perform necessary pre-processing steps. |
|
|
|
Parameters: |
|
input (dict): include the data itself and its metadata information. |
|
|
|
The option 'direction' can be used to swap domain A and domain B. |
|
""" |
|
AtoB = self.opt.direction == 'AtoB' |
|
self.real_A = input['A' if AtoB else 'B'].to(self.device) |
|
self.real_B = input['B' if AtoB else 'A'].to(self.device) |
|
self.image_paths = input['A_paths' if AtoB else 'B_paths'] |
|
|
|
def forward(self): |
|
"""Run forward pass; called by both functions <optimize_parameters> and <test>.""" |
|
self.fake_B = self.netG_A(self.real_A) |
|
self.rec_A = self.netG_B(self.fake_B) |
|
self.fake_A = self.netG_B(self.real_B) |
|
self.rec_B = self.netG_A(self.fake_A) |
|
|
|
def backward_D_basic(self, netD, real, fake): |
|
"""Calculate GAN loss for the discriminator |
|
|
|
Parameters: |
|
netD (network) -- the discriminator D |
|
real (tensor array) -- real images |
|
fake (tensor array) -- images generated by a generator |
|
|
|
Return the discriminator loss. |
|
We also call loss_D.backward() to calculate the gradients. |
|
""" |
|
|
|
pred_real = netD(real) |
|
loss_D_real = self.criterionGAN(pred_real, True) |
|
|
|
pred_fake = netD(fake.detach()) |
|
loss_D_fake = self.criterionGAN(pred_fake, False) |
|
|
|
loss_D = (loss_D_real + loss_D_fake) * 0.5 |
|
loss_D.backward() |
|
return loss_D |
|
|
|
def backward_D_A(self): |
|
"""Calculate GAN loss for discriminator D_A""" |
|
fake_B = self.fake_B_pool.query(self.fake_B) |
|
self.loss_D_A = self.backward_D_basic(self.netD_A, self.real_B, fake_B) |
|
|
|
def backward_D_B(self): |
|
"""Calculate GAN loss for discriminator D_B""" |
|
fake_A = self.fake_A_pool.query(self.fake_A) |
|
self.loss_D_B = self.backward_D_basic(self.netD_B, self.real_A, fake_A) |
|
|
|
def backward_G(self): |
|
"""Calculate the loss for generators G_A and G_B""" |
|
lambda_idt = self.opt.lambda_identity |
|
lambda_A = self.opt.lambda_A |
|
lambda_B = self.opt.lambda_B |
|
|
|
if lambda_idt > 0: |
|
|
|
self.idt_A = self.netG_A(self.real_B) |
|
self.loss_idt_A = self.criterionIdt(self.idt_A, self.real_B) * lambda_B * lambda_idt |
|
|
|
self.idt_B = self.netG_B(self.real_A) |
|
self.loss_idt_B = self.criterionIdt(self.idt_B, self.real_A) * lambda_A * lambda_idt |
|
else: |
|
self.loss_idt_A = 0 |
|
self.loss_idt_B = 0 |
|
|
|
|
|
self.loss_G_A = self.criterionGAN(self.netD_A(self.fake_B), True) |
|
|
|
self.loss_G_B = self.criterionGAN(self.netD_B(self.fake_A), True) |
|
|
|
self.loss_cycle_A = self.criterionCycle(self.rec_A, self.real_A) * lambda_A |
|
|
|
self.loss_cycle_B = self.criterionCycle(self.rec_B, self.real_B) * lambda_B |
|
|
|
self.loss_G = self.loss_G_A + self.loss_G_B + self.loss_cycle_A + self.loss_cycle_B + self.loss_idt_A + self.loss_idt_B |
|
self.loss_G.backward() |
|
|
|
def optimize_parameters(self): |
|
"""Calculate losses, gradients, and update network weights; called in every training iteration""" |
|
|
|
self.forward() |
|
|
|
self.set_requires_grad([self.netD_A, self.netD_B], False) |
|
self.optimizer_G.zero_grad() |
|
self.backward_G() |
|
self.optimizer_G.step() |
|
|
|
self.set_requires_grad([self.netD_A, self.netD_B], True) |
|
self.optimizer_D.zero_grad() |
|
self.backward_D_A() |
|
self.backward_D_B() |
|
self.optimizer_D.step() |
|
|