File size: 1,918 Bytes
0f3a1e4 8820131 0f3a1e4 cfcb529 0f3a1e4 cfcb529 0f3a1e4 8820131 0f3a1e4 8820131 0f3a1e4 cfcb529 0f3a1e4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- crd3
metrics:
- rouge
model-index:
- name: primer-crd3
results:
- task:
name: Sequence-to-sequence Language Modeling
type: text2text-generation
dataset:
name: crd3
type: crd3
config: default
split: train[:500]
args: default
metrics:
- name: Rouge1
type: rouge
value: 0.1510358452879352
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# primer-crd3
This model is a fine-tuned version of [allenai/PRIMERA](https://huggingface.co/allenai/PRIMERA) on the crd3 dataset.
It achieves the following results on the evaluation set:
- Loss: 3.8193
- Rouge1: 0.1510
- Rouge2: 0.0279
- Rougel: 0.1251
- Rougelsum: 0.1355
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|
| No log | 1.0 | 250 | 2.9569 | 0.1762 | 0.0485 | 0.1525 | 0.1605 |
| 1.7993 | 2.0 | 500 | 3.4079 | 0.1612 | 0.0286 | 0.1367 | 0.1444 |
| 1.7993 | 3.0 | 750 | 3.8193 | 0.1510 | 0.0279 | 0.1251 | 0.1355 |
### Framework versions
- Transformers 4.24.0
- Pytorch 1.8.0
- Datasets 2.7.0
- Tokenizers 0.13.2
|