Update README.md
Browse files
README.md
CHANGED
@@ -6,33 +6,23 @@ tags:
|
|
6 |
- sentence-similarity
|
7 |
license: mit
|
8 |
datasets:
|
9 |
-
- sentence-transformers/embedding-training-data
|
10 |
-
- clips/mfaq
|
11 |
- squad
|
12 |
- eli5
|
|
|
13 |
language:
|
14 |
- da
|
15 |
library_name: sentence-transformers
|
16 |
---
|
17 |
|
18 |
-
**Work in progress**
|
19 |
-
|
20 |
# MiniLM-L6-danish-encoder
|
21 |
|
22 |
This is a lightweight (~22 M parameters) [sentence-transformers](https://www.SBERT.net) model for Danish NLP: It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for tasks like clustering or semantic search.
|
23 |
|
24 |
-
The maximum sequence length is
|
25 |
-
|
26 |
-
The model was not pre-trained from scratch but adapted from the English version with a [tokenizer](https://huggingface.co/KennethTM/bert-base-uncased-danish) trained on Danish text.
|
27 |
|
28 |
-
|
29 |
|
30 |
-
|
31 |
-
query = "Kan man cykle på en vej?"
|
32 |
-
query_template = f"Query: {query}"
|
33 |
-
|
34 |
-
#query_template kan now be embedded and similarity compared to other passages
|
35 |
-
```
|
36 |
|
37 |
# Usage (Sentence-Transformers)
|
38 |
|
@@ -45,7 +35,7 @@ Then you can use the model like this:
|
|
45 |
|
46 |
```python
|
47 |
from sentence_transformers import SentenceTransformer
|
48 |
-
sentences = ["
|
49 |
|
50 |
model = SentenceTransformer('KennethTM/MiniLM-L6-danish-encoder')
|
51 |
embeddings = model.encode(sentences)
|
@@ -66,7 +56,7 @@ def mean_pooling(model_output, attention_mask):
|
|
66 |
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
67 |
|
68 |
# Sentences we want sentence embeddings for
|
69 |
-
sentences = ["
|
70 |
|
71 |
# Load model from HuggingFace Hub
|
72 |
tokenizer = AutoTokenizer.from_pretrained('KennethTM/MiniLM-L6-danish-encoder')
|
@@ -87,4 +77,4 @@ sentence_embeddings = F.normalize(sentence_embeddings, p=2, dim=1)
|
|
87 |
|
88 |
print("Sentence embeddings:")
|
89 |
print(sentence_embeddings)
|
90 |
-
```
|
|
|
6 |
- sentence-similarity
|
7 |
license: mit
|
8 |
datasets:
|
|
|
|
|
9 |
- squad
|
10 |
- eli5
|
11 |
+
- sentence-transformers/embedding-training-data
|
12 |
language:
|
13 |
- da
|
14 |
library_name: sentence-transformers
|
15 |
---
|
16 |
|
|
|
|
|
17 |
# MiniLM-L6-danish-encoder
|
18 |
|
19 |
This is a lightweight (~22 M parameters) [sentence-transformers](https://www.SBERT.net) model for Danish NLP: It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for tasks like clustering or semantic search.
|
20 |
|
21 |
+
The maximum sequence length is 512 tokens.
|
|
|
|
|
22 |
|
23 |
+
The model was not pre-trained from scratch but adapted from the English version with a [Danish tokenizer](https://huggingface.co/KennethTM/bert-base-uncased-danish).
|
24 |
|
25 |
+
Trained on ELI5 and SQUAD data machine translated from English to Danish.
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
# Usage (Sentence-Transformers)
|
28 |
|
|
|
35 |
|
36 |
```python
|
37 |
from sentence_transformers import SentenceTransformer
|
38 |
+
sentences = ["Kører der cykler på vejen?", "En panda løber på vejen.", "En mand kører hurtigt forbi på cykel."]
|
39 |
|
40 |
model = SentenceTransformer('KennethTM/MiniLM-L6-danish-encoder')
|
41 |
embeddings = model.encode(sentences)
|
|
|
56 |
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
57 |
|
58 |
# Sentences we want sentence embeddings for
|
59 |
+
sentences = ["Kører der cykler på vejen?", "En panda løber på vejen.", "En mand kører hurtigt forbi på cykel."]
|
60 |
|
61 |
# Load model from HuggingFace Hub
|
62 |
tokenizer = AutoTokenizer.from_pretrained('KennethTM/MiniLM-L6-danish-encoder')
|
|
|
77 |
|
78 |
print("Sentence embeddings:")
|
79 |
print(sentence_embeddings)
|
80 |
+
```
|