Ketansomewhere commited on
Commit
dd697ef
1 Parent(s): 132ed6e

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +172 -0
README.md ADDED
@@ -0,0 +1,172 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ language:
4
+ - en
5
+ library_name: diffusers
6
+ tags:
7
+ - diffusion
8
+ - Conditional Diffusion
9
+ ---
10
+
11
+
12
+ Here is Custom Pipeline for Class conditioned diffusion model. For training script, pipeline, tutorial nb and sampling please check my Github Repo:- https://github.com/KetanMann/Class_Conditioned_Diffusion_Training_Script
13
+ Here is Class Conditional Diffusion Pipeline and Sampling.
14
+
15
+ <div align="center">
16
+ <img src="grid_images_fer.gif" alt="Class Conditioned Diffusion GIF">
17
+ </div>
18
+
19
+
20
+ ## Firstly install Requirements:-
21
+
22
+
23
+ ```bash
24
+ !pip install diffusers
25
+ ```
26
+
27
+
28
+ ## For Sampling run this:-
29
+
30
+
31
+ ```bash
32
+ from diffusers import UNet2DModel, DDPMScheduler
33
+ from diffusers.utils.torch_utils import randn_tensor
34
+ from diffusers.pipelines.pipeline_utils import DiffusionPipeline, ImagePipelineOutput
35
+ from huggingface_hub import hf_hub_download
36
+ import torch
37
+ import os
38
+ from PIL import Image
39
+ import matplotlib.pyplot as plt
40
+ from typing import List, Optional, Tuple, Union
41
+
42
+ class DDPMPipelinenew(DiffusionPipeline):
43
+ def __init__(self, unet, scheduler, num_classes: int):
44
+ super().__init__()
45
+ self.register_modules(unet=unet, scheduler=scheduler)
46
+ self.num_classes = num_classes
47
+ self._device = unet.device # Ensure the pipeline knows the device
48
+
49
+ @torch.no_grad()
50
+ def __call__(
51
+ self,
52
+ batch_size: int = 64,
53
+ class_labels: Optional[torch.Tensor] = None,
54
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
55
+ num_inference_steps: int = 1000,
56
+ output_type: Optional[str] = "pil",
57
+ return_dict: bool = True,
58
+ ) -> Union[ImagePipelineOutput, Tuple]:
59
+
60
+ # Ensure class_labels is on the same device as the model
61
+ class_labels = class_labels.to(self._device)
62
+ if class_labels.ndim == 0:
63
+ class_labels = class_labels.unsqueeze(0).expand(batch_size)
64
+ else:
65
+ class_labels = class_labels.expand(batch_size)
66
+
67
+ # Sample gaussian noise to begin loop
68
+ if isinstance(self.unet.config.sample_size, int):
69
+ image_shape = (
70
+ batch_size,
71
+ self.unet.config.in_channels,
72
+ self.unet.config.sample_size,
73
+ self.unet.config.sample_size,
74
+ )
75
+ else:
76
+ image_shape = (batch_size, self.unet.config.in_channels, *self.unet.config.sample_size)
77
+
78
+ image = randn_tensor(image_shape, generator=generator, device=self._device)
79
+
80
+ # Set step values
81
+ self.scheduler.set_timesteps(num_inference_steps)
82
+
83
+ for t in self.progress_bar(self.scheduler.timesteps):
84
+ # Ensure the class labels are correctly broadcast to match the input tensor shape
85
+ model_output = self.unet(image, t, class_labels).sample
86
+
87
+ image = self.scheduler.step(model_output, t, image, generator=generator).prev_sample
88
+
89
+ image = (image / 2 + 0.5).clamp(0, 1)
90
+ image = image.cpu().permute(0, 2, 3, 1).numpy()
91
+ if output_type == "pil":
92
+ image = self.numpy_to_pil(image)
93
+
94
+ if not return_dict:
95
+ return (image,)
96
+
97
+ return ImagePipelineOutput(images=image)
98
+
99
+ def to(self, device: torch.device):
100
+ self._device = device
101
+ self.unet.to(device)
102
+ return self
103
+
104
+ def load_pipeline(repo_id, num_classes, device):
105
+ unet = UNet2DModel.from_pretrained(repo_id, subfolder="unet").to(device)
106
+ scheduler = DDPMScheduler.from_pretrained(repo_id, subfolder="scheduler")
107
+ pipeline = DDPMPipelinenew(unet=unet, scheduler=scheduler, num_classes=num_classes)
108
+ return pipeline.to(device) # Move the entire pipeline to the device
109
+
110
+ def save_images_locally(images, save_dir, epoch, class_label):
111
+ os.makedirs(save_dir, exist_ok=True)
112
+ for i, image in enumerate(images):
113
+ image_path = os.path.join(save_dir, f"image_epoch{epoch}_class{class_label}_idx{i}.png")
114
+ image.save(image_path)
115
+
116
+ def generate_images(pipeline, class_label, batch_size, num_inference_steps, save_dir, epoch):
117
+ generator = torch.Generator(device=pipeline._device).manual_seed(0)
118
+ class_labels = torch.tensor([class_label] * batch_size).to(pipeline._device)
119
+ images = pipeline(
120
+ generator=generator,
121
+ batch_size=batch_size,
122
+ num_inference_steps=num_inference_steps,
123
+ class_labels=class_labels,
124
+ output_type="pil",
125
+ ).images
126
+ save_images_locally(images, save_dir, epoch, class_label)
127
+ return images
128
+
129
+ def create_image_grid(images, grid_size, save_path):
130
+ total_images = grid_size ** 2
131
+ if len(images) < total_images:
132
+ padding_images = total_images - len(images)
133
+ images += [Image.new('RGB', images[0].size)] * padding_images # Pad with blank images
134
+
135
+ width, height = images[0].size
136
+ grid_img = Image.new('RGB', (grid_size * width, grid_size * height))
137
+
138
+ for i, image in enumerate(images):
139
+ x = i % grid_size * width
140
+ y = i // grid_size * height
141
+ grid_img.paste(image, (x, y))
142
+
143
+ grid_img.save(save_path)
144
+ return grid_img
145
+
146
+ if __name__ == "__main__":
147
+ repo_id = "Ketansomewhere/King"
148
+ num_classes = 7 # Adjust to your number of classes
149
+ batch_size = 64
150
+ num_inference_steps = 1000 # Can be as low as 50 for faster generation
151
+ save_dir = "generated_images"
152
+ epoch = 0
153
+ grid_size = 8 # 8x8 grid
154
+
155
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
156
+ pipeline = load_pipeline(repo_id, num_classes, device)
157
+
158
+ for class_label in range(num_classes):
159
+ images = generate_images(pipeline, class_label, batch_size, num_inference_steps, save_dir, epoch)
160
+
161
+ # Create and save the grid image
162
+ grid_img_path = os.path.join(save_dir, f"grid_image_class{class_label}.png")
163
+ grid_img = create_image_grid(images, grid_size, grid_img_path)
164
+
165
+ # Plot the grid image
166
+ plt.figure(figsize=(10, 10))
167
+ plt.imshow(grid_img)
168
+ plt.axis('off')
169
+ plt.title(f'Class {class_label}')
170
+ plt.savefig(os.path.join(save_dir, f"grid_image_class{class_label}.png"))
171
+ plt.show()
172
+ ```