Update README.md
Browse files
README.md
CHANGED
@@ -10,36 +10,50 @@ license: apache-2.0
|
|
10 |
The following code shows how to test in the model.
|
11 |
python
|
12 |
```
|
13 |
-
import torch
|
14 |
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
|
|
15 |
|
16 |
-
# Load
|
17 |
-
model_path = "model"
|
18 |
model = AutoModelForSequenceClassification.from_pretrained(model_path)
|
19 |
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
20 |
|
21 |
-
#
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
predictions
|
43 |
-
|
44 |
-
|
45 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
The following code shows how to test in the model.
|
11 |
python
|
12 |
```
|
|
|
13 |
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
14 |
+
import torch
|
15 |
|
16 |
+
# Load model and tokenizer
|
17 |
+
model_path = "model" # Ensure this path points to the correct directory
|
18 |
model = AutoModelForSequenceClassification.from_pretrained(model_path)
|
19 |
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
20 |
|
21 |
+
# Define the path to your text file
|
22 |
+
file_path = 'cl.txt'
|
23 |
+
|
24 |
+
# Read the content of the file
|
25 |
+
with open(file_path, 'r', encoding='utf-8') as file:
|
26 |
+
new_text = file.read()
|
27 |
+
|
28 |
+
# Encode the text using the tokenizer used during training
|
29 |
+
encoded_input = tokenizer(new_text, return_tensors='pt', padding=True, truncation=True, max_length=64)
|
30 |
+
|
31 |
+
# Move the model to the correct device (CPU or GPU if available)
|
32 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
33 |
+
model = model.to(device) # Move model to the correct device
|
34 |
+
encoded_input = {k: v.to(device) for k, v in encoded_input.items()} # Move tensor to the correct device
|
35 |
+
|
36 |
+
model.eval() # Set the model to evaluation mode
|
37 |
+
|
38 |
+
# Perform the prediction
|
39 |
+
with torch.no_grad():
|
40 |
+
outputs = model(**encoded_input)
|
41 |
+
|
42 |
+
# Get the predictions (assumes classification with labels)
|
43 |
+
predictions = outputs.logits.squeeze()
|
44 |
+
|
45 |
+
# Assuming softmax is needed to interpret the logits as probabilities
|
46 |
+
probabilities = torch.softmax(predictions, dim=0)
|
47 |
+
|
48 |
+
# Define labels for each class index based on your classification categories
|
49 |
+
labels = ["risk", "neutral", "opportunity"]
|
50 |
+
predicted_index = torch.argmax(probabilities).item() # Get the index of the max probability
|
51 |
+
predicted_label = labels[predicted_index]
|
52 |
+
predicted_probability = probabilities[predicted_index].item()
|
53 |
+
|
54 |
+
# Print the predicted label and its probability
|
55 |
+
print(f"Predicted Label: {predicted_label}, Probability: {predicted_probability:.4f}")
|
56 |
+
|
57 |
+
##the output example: predicted Label: neutral, Probability: 0.8377
|
58 |
+
|
59 |
+
```
|