File size: 2,342 Bytes
2596f5c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 |
---
license: apache-2.0
base_model: sentence-transformers/all-mpnet-base-v2
tags:
- generated_from_trainer
metrics:
- f1
- accuracy
model-index:
- name: all-mpnet-base-v2-20240102
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# all-mpnet-base-v2-20240102
This model is a fine-tuned version of [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1930
- F1: 0.7429
- Roc Auc: 0.8143
- Accuracy: 0.6406
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 11
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|:--------:|
| No log | 1.0 | 109 | 0.3929 | 0.0 | 0.5 | 0.0 |
| No log | 2.0 | 218 | 0.3159 | 0.0 | 0.5 | 0.0 |
| No log | 3.0 | 327 | 0.2721 | 0.5170 | 0.6766 | 0.3564 |
| No log | 4.0 | 436 | 0.2410 | 0.6267 | 0.7382 | 0.4854 |
| 0.3349 | 5.0 | 545 | 0.2238 | 0.6389 | 0.7415 | 0.4889 |
| 0.3349 | 6.0 | 654 | 0.2115 | 0.6564 | 0.7538 | 0.5156 |
| 0.3349 | 7.0 | 763 | 0.2005 | 0.6985 | 0.7824 | 0.5749 |
| 0.3349 | 8.0 | 872 | 0.1930 | 0.7429 | 0.8143 | 0.6406 |
| 0.3349 | 9.0 | 981 | 0.1903 | 0.7413 | 0.8161 | 0.6461 |
| 0.1716 | 10.0 | 1090 | 0.1879 | 0.7379 | 0.8170 | 0.6500 |
| 0.1716 | 11.0 | 1199 | 0.1879 | 0.7359 | 0.8141 | 0.6431 |
### Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.16.1
- Tokenizers 0.15.0
|