File size: 1,360 Bytes
35b6aa7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
bucket_no_upscale = true
bucket_reso_steps = 64
cache_latents = true
cache_latents_to_disk = true
clip_skip = 1
dynamo_backend = "no"
epoch = 1
full_fp16 = true
gradient_accumulation_steps = 1
gradient_checkpointing = true
huber_c = 0.1
huber_schedule = "snr"
learning_rate = 1e-5
learning_rate_te1 = 3e-6
logging_dir = "/kaggle/working/outputs/log"
loss_type = "l2"
lr_scheduler = "constant"
lr_scheduler_args = []
lr_scheduler_num_cycles = 1
lr_scheduler_power = 1
max_bucket_reso = 2048
max_data_loader_n_workers = 0
max_timestep = 1000
max_token_length = 75
max_train_steps = 800
min_bucket_reso = 256
mixed_precision = "fp16"
noise_offset_type = "Original"
optimizer_args = [ "scale_parameter=False", "relative_step=False", "warmup_init=False", "weight_decay=0.01",]
optimizer_type = "Adafactor"
output_dir = "/kaggle/temp/models"
output_name = "Kaggle_SDXL_Base_DreamBooth"
pretrained_model_name_or_path = "stabilityai/stable-diffusion-xl-base-1.0"
prior_loss_weight = 1
reg_data_dir = "/kaggle/working/outputs/reg"
resolution = "1024,1024"
sample_prompts = "/kaggle/temp/models/prompt.txt"
sample_sampler = "euler_a"
save_every_n_epochs = 1
save_every_n_steps = 2251
save_model_as = "safetensors"
save_precision = "fp16"
train_batch_size = 2
train_data_dir = "/kaggle/working/outputs/img"
vae = "stabilityai/sdxl-vae"
vae_batch_size = 4
xformers = true