bucket_no_upscale = true bucket_reso_steps = 64 cache_latents = true cache_latents_to_disk = true clip_skip = 1 dynamo_backend = "no" epoch = 1 full_fp16 = true gradient_accumulation_steps = 1 gradient_checkpointing = true huber_c = 0.1 huber_schedule = "snr" learning_rate = 1e-5 learning_rate_te1 = 3e-6 logging_dir = "/kaggle/working/outputs/log" loss_type = "l2" lr_scheduler = "constant" lr_scheduler_args = [] lr_scheduler_num_cycles = 1 lr_scheduler_power = 1 max_bucket_reso = 2048 max_data_loader_n_workers = 0 max_timestep = 1000 max_token_length = 75 max_train_steps = 800 min_bucket_reso = 256 mixed_precision = "fp16" noise_offset_type = "Original" optimizer_args = [ "scale_parameter=False", "relative_step=False", "warmup_init=False", "weight_decay=0.01",] optimizer_type = "Adafactor" output_dir = "/kaggle/temp/models" output_name = "Kaggle_SDXL_Base_DreamBooth" pretrained_model_name_or_path = "stabilityai/stable-diffusion-xl-base-1.0" prior_loss_weight = 1 reg_data_dir = "/kaggle/working/outputs/reg" resolution = "1024,1024" sample_prompts = "/kaggle/temp/models/prompt.txt" sample_sampler = "euler_a" save_every_n_epochs = 1 save_every_n_steps = 2251 save_model_as = "safetensors" save_precision = "fp16" train_batch_size = 2 train_data_dir = "/kaggle/working/outputs/img" vae = "stabilityai/sdxl-vae" vae_batch_size = 4 xformers = true