--- library_name: transformers language: - en license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - ylacombe/english_dialects metrics: - wer model-index: - name: Whisper Small Dv - khaled lakhdher results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: ylacombe/english_dialects type: ylacombe/english_dialects metrics: - name: Wer type: wer value: 6.0064935064935066 --- # Whisper Small Dv - khaled lakhdher This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the ylacombe/english_dialects dataset. It achieves the following results on the evaluation set: - Loss: 0.2430 - Wer Ortho: 6.5898 - Wer: 6.0065 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: constant_with_warmup - lr_scheduler_warmup_steps: 50 - training_steps: 500 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer | |:-------------:|:-------:|:----:|:---------------:|:---------:|:------:| | 0.0002 | 19.2308 | 500 | 0.2430 | 6.5898 | 6.0065 | ### Framework versions - Transformers 4.48.3 - Pytorch 2.5.1+cu124 - Datasets 3.3.2 - Tokenizers 0.21.0