Upload Banglish_to_Bengali_Transliteration.ipynb
Browse files
Banglish_to_Bengali_Transliteration.ipynb
ADDED
@@ -0,0 +1,115 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"nbformat": 4,
|
3 |
+
"nbformat_minor": 0,
|
4 |
+
"metadata": {
|
5 |
+
"colab": {
|
6 |
+
"provenance": []
|
7 |
+
},
|
8 |
+
"kernelspec": {
|
9 |
+
"name": "python3",
|
10 |
+
"display_name": "Python 3"
|
11 |
+
},
|
12 |
+
"language_info": {
|
13 |
+
"name": "python"
|
14 |
+
}
|
15 |
+
},
|
16 |
+
"cells": [
|
17 |
+
{
|
18 |
+
"cell_type": "code",
|
19 |
+
"source": [
|
20 |
+
"# Install necessary libraries\n",
|
21 |
+
"!pip install datasets\n",
|
22 |
+
"\n",
|
23 |
+
"# Importing required libraries for dataset, model, tokenizer, training, and evaluation\n",
|
24 |
+
"from datasets import load_dataset\n",
|
25 |
+
"from transformers import T5Tokenizer, T5ForConditionalGeneration, Trainer, TrainingArguments\n",
|
26 |
+
"from sklearn.model_selection import train_test_split\n",
|
27 |
+
"import torch\n",
|
28 |
+
"from IPython import get_ipython\n",
|
29 |
+
"from IPython.display import display"
|
30 |
+
],
|
31 |
+
"metadata": {
|
32 |
+
"id": "HrXBpUDmLbKH"
|
33 |
+
},
|
34 |
+
"execution_count": null,
|
35 |
+
"outputs": []
|
36 |
+
},
|
37 |
+
{
|
38 |
+
"cell_type": "code",
|
39 |
+
"source": [
|
40 |
+
"# 1. Load Dataset\n",
|
41 |
+
"# Load the Bengali transliteration dataset\n",
|
42 |
+
"raw_dataset = load_dataset(\"SKNahin/bengali-transliteration-data\")\n",
|
43 |
+
"\n",
|
44 |
+
"# Split dataset into training and validation sets (90% training, 10% validation)\n",
|
45 |
+
"train_data = raw_dataset['train'].train_test_split(test_size=0.1, seed=42)['train'] # Added seed for reproducibility\n",
|
46 |
+
"val_data = raw_dataset['train'].train_test_split(test_size=0.1, seed=42)['test'] # Added seed for reproducibility\n",
|
47 |
+
"\n",
|
48 |
+
"# 2. Preprocessing\n",
|
49 |
+
"# Define model name for T5 and load its tokenizer\n",
|
50 |
+
"model_name = \"google/mt5-small\"\n",
|
51 |
+
"tokenizer = T5Tokenizer.from_pretrained(model_name)\n",
|
52 |
+
"\n",
|
53 |
+
"# Tokenize function for preprocessing the data\n",
|
54 |
+
"def preprocess_data(examples):\n",
|
55 |
+
" # Tokenize input and target sequences with padding and truncation to fixed length\n",
|
56 |
+
" # Access the correct columns based on the dataset structure\n",
|
57 |
+
" inputs = tokenizer(examples['bn'], padding=\"max_length\", truncation=True, max_length=128)\n",
|
58 |
+
" targets = tokenizer(examples['rm'], padding=\"max_length\", truncation=True, max_length=128)\n",
|
59 |
+
"\n",
|
60 |
+
" # Assign the tokenized target as labels for the model\n",
|
61 |
+
" inputs['labels'] = targets['input_ids']\n",
|
62 |
+
" return inputs\n",
|
63 |
+
"\n",
|
64 |
+
"# Apply the preprocessing function to the training and validation datasets\n",
|
65 |
+
"train_dataset = train_data.map(preprocess_data, batched=True)\n",
|
66 |
+
"val_dataset = val_data.map(preprocess_data, batched=True)\n",
|
67 |
+
"\n",
|
68 |
+
"# 3. Model Selection\n",
|
69 |
+
"# Load the T5 model for conditional generation\n",
|
70 |
+
"model = T5ForConditionalGeneration.from_pretrained(model_name)\n",
|
71 |
+
"\n",
|
72 |
+
"# 4. Training\n",
|
73 |
+
"# Define training arguments like learning rate, batch size, number of epochs, etc.\n",
|
74 |
+
"training_args = TrainingArguments(\n",
|
75 |
+
" output_dir=\"./results\", # Directory to store the results\n",
|
76 |
+
" evaluation_strategy=\"epoch\", # Evaluate model after each epoch\n",
|
77 |
+
" learning_rate=5e-5, # Learning rate\n",
|
78 |
+
" per_device_train_batch_size=16, # Batch size for training\n",
|
79 |
+
" per_device_eval_batch_size=16, # Batch size for evaluation\n",
|
80 |
+
" num_train_epochs=5, # Number of training epochs\n",
|
81 |
+
" weight_decay=0.01, # Weight decay for regularization\n",
|
82 |
+
" save_steps=1000, # Save model every 1000 steps\n",
|
83 |
+
" save_total_limit=2, # Keep only 2 most recent checkpoints\n",
|
84 |
+
" logging_dir=\"./logs\", # Directory to store logs\n",
|
85 |
+
" logging_steps=500, # Log every 500 steps\n",
|
86 |
+
")\n"
|
87 |
+
],
|
88 |
+
"metadata": {
|
89 |
+
"id": "kxHZMLRKPr6L"
|
90 |
+
},
|
91 |
+
"execution_count": null,
|
92 |
+
"outputs": []
|
93 |
+
},
|
94 |
+
{
|
95 |
+
"cell_type": "code",
|
96 |
+
"source": [
|
97 |
+
"# Initialize the Trainer with the model, arguments, and datasets\n",
|
98 |
+
"trainer = Trainer(\n",
|
99 |
+
" model=model,\n",
|
100 |
+
" args=training_args,\n",
|
101 |
+
" train_dataset=train_dataset,\n",
|
102 |
+
" eval_dataset=val_dataset\n",
|
103 |
+
")\n",
|
104 |
+
"\n",
|
105 |
+
"# Start the training process\n",
|
106 |
+
"trainer.train()"
|
107 |
+
],
|
108 |
+
"metadata": {
|
109 |
+
"id": "9_9U0GCCoTqZ"
|
110 |
+
},
|
111 |
+
"execution_count": null,
|
112 |
+
"outputs": []
|
113 |
+
}
|
114 |
+
]
|
115 |
+
}
|