KhariotnovKK
commited on
Commit
•
edc401e
1
Parent(s):
55a8a70
first commit of Luna_lender
Browse files- .gitattributes +1 -0
- Luna_lender_kharitonov.zip +3 -0
- Luna_lender_kharitonov/_stable_baselines3_version +1 -0
- Luna_lender_kharitonov/data +94 -0
- Luna_lender_kharitonov/policy.optimizer.pth +3 -0
- Luna_lender_kharitonov/policy.pth +3 -0
- Luna_lender_kharitonov/pytorch_variables.pth +3 -0
- Luna_lender_kharitonov/system_info.txt +7 -0
- README.md +28 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
Luna_lender_kharitonov.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:58f491d5c362da6435b7d4a722d8ac5cc237bcb14c0b7ba8f61810a7ee0c459d
|
3 |
+
size 144016
|
Luna_lender_kharitonov/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
Luna_lender_kharitonov/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7faae40034d0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7faae4003560>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7faae40035f0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7faae4003680>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7faae4003710>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7faae40037a0>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7faae4003830>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7faae40038c0>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7faae4003950>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7faae40039e0>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7faae4003a70>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7faae3fca9f0>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 507904,
|
46 |
+
"_total_timesteps": 500000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1651824017.6213288,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAPM9Db5DCVg/RIQ4vcSD0765Zei9bX3iPQAAAAAAAAAAAM4OPPZ8WboFKqW6F0GPtXsYUrp3zb05AACAPwAAgD+zVXg9KWh7ul3Mg7tFARs1fzOOOma6jLQAAIA/AACAPzN2X732TEq66F50PC9i3Dhfeby6+lzXNwAAgD8AAIA/5p5sPfa8E7pSXcA6Yna3NTYqMjoW8du5AACAPwAAgD/NZS8+YeiAO9hIgzvZIRs93nHxPNESBDwAAIA/AACAP+CSMT4KYXg8sL3GN/ZBBzYRwwM+h8YDtwAAgD8AAIA/TeITvlF0mz+2VIe+y164vh9Flb6QnZC9AAAAAAAAAAAaG+G9XFNqutmDozzMIYi04zs/OsSBQ7MAAIA/AACAPw1vzb3D9WC6w3GkupTzFbakEgM7KFG8OQAAgD8AAIA/jUX6PXiAvT5Io/69Oew2vqImC76mNNi8AAAAAAAAAAAzmia9KfgtuuJcnTsCpNg34W6Nuors/rUAAIA/AACAP8qFgT6L9DI/43ERPp6lwr76nRU+DlNSPQAAAAAAAAAAerorvvZsHrqqEMQ7cAyLPBqOPLwYR3Y9AACAPwAAgD96bHQ+xY6JPDUVwDpJdhI530wPPvtP67kAAIA/AACAP7PFrr3CGaY/lW5OvhpZsr7PMq29zl3UPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVZxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIIzDWNzBwZECUhpRSlIwBbJRN6AOMAXSUR0CA448jAzpHdX2UKGgGaAloD0MIoDiAft+//T+UhpRSlGgVS/BoFkdAgPXAjyFwk3V9lChoBmgJaA9DCH3KMVncj1dAlIaUUpRoFU3oA2gWR0CA/jreqJdjdX2UKGgGaAloD0MIAOFDiZYTVECUhpRSlGgVTegDaBZHQIEB+WGATZh1fZQoaAZoCWgPQwjM7snDwsViQJSGlFKUaBVN6ANoFkdAgQl6Lfk3j3V9lChoBmgJaA9DCCwujsrNuWFAlIaUUpRoFU3oA2gWR0CBEBUQTVUddX2UKGgGaAloD0MIdVd2weD7Y0CUhpRSlGgVTegDaBZHQIEvAc7yQPt1fZQoaAZoCWgPQwiE1sOXifozQJSGlFKUaBVL2mgWR0CBMsm78Nx3dX2UKGgGaAloD0MIbHak+s5vWkCUhpRSlGgVTegDaBZHQIE3NPDYRNB1fZQoaAZoCWgPQwhExM2pZGJXQJSGlFKUaBVN6ANoFkdAgUbCRW912nV9lChoBmgJaA9DCJGZC1weT15AlIaUUpRoFU3oA2gWR0CBSDNGmUGFdX2UKGgGaAloD0MIK6ORzyuexr+UhpRSlGgVS7loFkdAgUtJ1JUYK3V9lChoBmgJaA9DCF6+9WG9uSZAlIaUUpRoFUvoaBZHQIFUmz4UN8V1fZQoaAZoCWgPQwgvTRHg9FtRQJSGlFKUaBVN6ANoFkdAgVTnjZL7GnV9lChoBmgJaA9DCEXxKmubGF1AlIaUUpRoFU3oA2gWR0CBWHEcbR4RdX2UKGgGaAloD0MIHv8FggAXZECUhpRSlGgVTegDaBZHQIGarPQfIS11fZQoaAZoCWgPQwhNFYxK6jteQJSGlFKUaBVN6ANoFkdAgZ8dQoCuEHV9lChoBmgJaA9DCOpcUUoIKWFAlIaUUpRoFU3oA2gWR0CBn2W9lEqldX2UKGgGaAloD0MID/CkhcsIW0CUhpRSlGgVTegDaBZHQIGhhCx/ust1fZQoaAZoCWgPQwhCtcGJ6OdeQJSGlFKUaBVN6ANoFkdAgabpv5xionV9lChoBmgJaA9DCBMLfEW31k9AlIaUUpRoFUv7aBZHQIGsoQrc0tR1fZQoaAZoCWgPQwgpJQSr6vlAQJSGlFKUaBVLoWgWR0CBrdwiJO32dX2UKGgGaAloD0MIHHxhMlXPYkCUhpRSlGgVTegDaBZHQIG2zn3cpLF1fZQoaAZoCWgPQwiTUtDtJYlCQJSGlFKUaBVL4mgWR0CBu4RPoFFEdX2UKGgGaAloD0MIPdF14Yd+ZECUhpRSlGgVTegDaBZHQIG9xc5bQkZ1fZQoaAZoCWgPQwjxYmGIHC1kQJSGlFKUaBVN6ANoFkdAgcDMd92HL3V9lChoBmgJaA9DCJqZmZkZsWdAlIaUUpRoFU3oA2gWR0CBxpWMCLdfdX2UKGgGaAloD0MIoDiAft85ZECUhpRSlGgVTegDaBZHQIHtxF7Uoa11fZQoaAZoCWgPQwgzpmCNs7ZgQJSGlFKUaBVN6ANoFkdAgf1bzCk43nV9lChoBmgJaA9DCFlS7j5HrGBAlIaUUpRoFU3oA2gWR0CB/vKdQO4HdX2UKGgGaAloD0MIJclzfZ9RYkCUhpRSlGgVTegDaBZHQIICMnVoYel1fZQoaAZoCWgPQwjOb5hokKhlQJSGlFKUaBVN6ANoFkdAggwaTOgQH3V9lChoBmgJaA9DCKUyxRyEMGFAlIaUUpRoFU3oA2gWR0CCDG2RaHKwdX2UKGgGaAloD0MI3lm77UJnO0CUhpRSlGgVS+JoFkdAglZiExqO93V9lChoBmgJaA9DCAN5dvnWoWJAlIaUUpRoFU3oA2gWR0CCWxJCjUNKdX2UKGgGaAloD0MIrrzkf/IKYUCUhpRSlGgVTegDaBZHQIJbYcinpB51fZQoaAZoCWgPQwgzT64pkKEnwJSGlFKUaBVL02gWR0CCYpVZs9B9dX2UKGgGaAloD0MIaXIxBtbx5b+UhpRSlGgVS9xoFkdAgmOlxOtW/HV9lChoBmgJaA9DCLGGi9xThWFAlIaUUpRoFU3oA2gWR0CCZU2wV0tAdX2UKGgGaAloD0MI0hvuI7fjX0CUhpRSlGgVTegDaBZHQIJr4dMj/uN1fZQoaAZoCWgPQwhQxCKGHQRjQJSGlFKUaBVN6ANoFkdAgm1M2FWXC3V9lChoBmgJaA9DCH7Er1hD9WZAlIaUUpRoFU3oA2gWR0CCd395yEL6dX2UKGgGaAloD0MISS2UTE6ND0CUhpRSlGgVS/NoFkdAgnx9znzQNXV9lChoBmgJaA9DCI+NQLwuUmJAlIaUUpRoFU3oA2gWR0CCfL8stkFwdX2UKGgGaAloD0MIwQKYMvDkYUCUhpRSlGgVTegDaBZHQIJ+6eEqUeN1fZQoaAZoCWgPQwioVfSHZvYuQJSGlFKUaBVL6GgWR0CCgcnl4keIdX2UKGgGaAloD0MIzox+NJz7X0CUhpRSlGgVTegDaBZHQIKB8mQbMot1fZQoaAZoCWgPQwheEJGadsdbQJSGlFKUaBVN6ANoFkdAgodnTZxrBXV9lChoBmgJaA9DCNm0UgjkLjLAlIaUUpRoFUvYaBZHQIKXO2NNrTJ1fZQoaAZoCWgPQwglIvyLoL01QJSGlFKUaBVL62gWR0CCpDJHRTjvdX2UKGgGaAloD0MIEtxI2aJCYkCUhpRSlGgVTegDaBZHQIKr/YUWVNZ1fZQoaAZoCWgPQwhQG9XpQDhIQJSGlFKUaBVLzmgWR0CCs7uG9HtndX2UKGgGaAloD0MIuB0aFiNIYECUhpRSlGgVTegDaBZHQIK6QwsXizd1fZQoaAZoCWgPQwiOOjquxqFmQJSGlFKUaBVN6ANoFkdAgr6qjzqbB3V9lChoBmgJaA9DCJBOXfmsH2RAlIaUUpRoFU3oA2gWR0CC28X+l0o0dX2UKGgGaAloD0MINlfNc8S2ZECUhpRSlGgVTegDaBZHQIMWvKOktVd1fZQoaAZoCWgPQwgMsI9OXUhdQJSGlFKUaBVN6ANoFkdAgx4/h/Aj6nV9lChoBmgJaA9DCKvMlNbfg15AlIaUUpRoFU3oA2gWR0CDIO/X5FgEdX2UKGgGaAloD0MIpbxWQvdKZUCUhpRSlGgVTegDaBZHQIMn5mdy1eB1fZQoaAZoCWgPQwg9f9qoTstkQJSGlFKUaBVN6ANoFkdAgylhF/hESnV9lChoBmgJaA9DCNttF5rrAV9AlIaUUpRoFU3oA2gWR0CDNEdVea8ZdX2UKGgGaAloD0MIMsnIWdjYYUCUhpRSlGgVTegDaBZHQIM5YxDb8FZ1fZQoaAZoCWgPQwhslWBxONliQJSGlFKUaBVN6ANoFkdAgzmhv73wkXV9lChoBmgJaA9DCP/qcd9qDGFAlIaUUpRoFU3oA2gWR0CDPx8zhxYJdX2UKGgGaAloD0MIMsaH2cu6YECUhpRSlGgVTegDaBZHQIM/Tk+5e7d1fZQoaAZoCWgPQwhorz4e+tY/QJSGlFKUaBVL22gWR0CDVfUxVQyidX2UKGgGaAloD0MIvVMB9zwnLcCUhpRSlGgVS8xoFkdAg1piuMdcS3V9lChoBmgJaA9DCHVZTGw+tidAlIaUUpRoFUvhaBZHQINd78xbjcV1fZQoaAZoCWgPQwgZOKClq3xgQJSGlFKUaBVN6ANoFkdAg2cTOxB3R3V9lChoBmgJaA9DCFYL7DGRamRAlIaUUpRoFU3oA2gWR0CDbvxNqQA/dX2UKGgGaAloD0MIhlj9EYbTVUCUhpRSlGgVTegDaBZHQIN2boMa0hN1fZQoaAZoCWgPQwjhzoWR3l5kQJSGlFKUaBVN6ANoFkdAg3xxF7Uoa3V9lChoBmgJaA9DCKhwBKkUwWNAlIaUUpRoFU3oA2gWR0CDgKRGMGX5dX2UKGgGaAloD0MIPWTKh6CiJUCUhpRSlGgVS/9oFkdAg4EPNVzZH3V9lChoBmgJaA9DCF3cRgN4ZVxAlIaUUpRoFU3oA2gWR0CDmzoaDPGAdX2UKGgGaAloD0MIb2b0o+HVYUCUhpRSlGgVTegDaBZHQIOfhxLkCFN1fZQoaAZoCWgPQwjmQA+1bXhBQJSGlFKUaBVL62gWR0CDoEbSZ0CBdX2UKGgGaAloD0MI7X+AtWqsX0CUhpRSlGgVTegDaBZHQIPcr/Khcqx1fZQoaAZoCWgPQwjzGyYapLljQJSGlFKUaBVN6ANoFkdAg97/MW43FXV9lChoBmgJaA9DCPfHe9XK12VAlIaUUpRoFU3oA2gWR0CD5VfAKv3bdX2UKGgGaAloD0MIE/QXesRgYUCUhpRSlGgVTegDaBZHQIPmtvqC6H11fZQoaAZoCWgPQwgtliL5yoNhQJSGlFKUaBVN6ANoFkdAg/DKVhTfi3V9lChoBmgJaA9DCILF4cwvZWVAlIaUUpRoFU3oA2gWR0CD9a2NvOyFdX2UKGgGaAloD0MI3/lFCfprEsCUhpRSlGgVS8xoFkdAg/jpG4I8hnV9lChoBmgJaA9DCMYUrHE2/0NAlIaUUpRoFUuvaBZHQIQSgWnCO3l1fZQoaAZoCWgPQwikwthCEAxiQJSGlFKUaBVN6ANoFkdAhBUSFPBSDXV9lChoBmgJaA9DCML6P4f5Al9AlIaUUpRoFU3oA2gWR0CEGUd1+y7gdX2UKGgGaAloD0MI6zao/dbqZkCUhpRSlGgVTegDaBZHQIQk3epGWld1fZQoaAZoCWgPQwiYofFEkA5gQJSGlFKUaBVN6ANoFkdAhCxzd+G47XV9lChoBmgJaA9DCA3/6QYKHA1AlIaUUpRoFUvYaBZHQIQwgmCyyD91fZQoaAZoCWgPQwg9Kv7viOImQJSGlFKUaBVL22gWR0CEMzOmixmkdX2UKGgGaAloD0MIy2Wjc/4JY0CUhpRSlGgVTegDaBZHQIQzvYUWVNZ1fZQoaAZoCWgPQwg2dLM/UJJgQJSGlFKUaBVN6ANoFkdAhDljzAeq73V9lChoBmgJaA9DCCwoDMq0T2VAlIaUUpRoFU3oA2gWR0CEPVpX6qKhdX2UKGgGaAloD0MIMuiE0EH5SUCUhpRSlGgVS8NoFkdAhD37cO9WZXV9lChoBmgJaA9DCMb7cfvlox7AlIaUUpRoFUvgaBZHQIRL9MfzSTh1fZQoaAZoCWgPQwgzox8Np59RQJSGlFKUaBVNAAFoFkdAhFMmOdXkpHV9lChoBmgJaA9DCALU1LK1IWNAlIaUUpRoFU3oA2gWR0CEVzZFocrBdX2UKGgGaAloD0MIdJmaBO/yYkCUhpRSlGgVTegDaBZHQIRbG4smOVB1fZQoaAZoCWgPQwh8fhghvEZkQJSGlFKUaBVN6ANoFkdAhFvAeq7yx3VlLg=="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 124,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
Luna_lender_kharitonov/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3fb709bb4deb59098e4e67c40693aa6ddb76a9f2d4de9dbee25c345e9bc0a72c
|
3 |
+
size 84829
|
Luna_lender_kharitonov/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fa7ae6d36978d3def0e64b2726aec6c8281c858b260a71ec010360fda2fecfeb
|
3 |
+
size 43201
|
Luna_lender_kharitonov/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
Luna_lender_kharitonov/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 235.49 +/- 22.57
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7faae40034d0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7faae4003560>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7faae40035f0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7faae4003680>", "_build": "<function ActorCriticPolicy._build at 0x7faae4003710>", "forward": "<function ActorCriticPolicy.forward at 0x7faae40037a0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7faae4003830>", "_predict": "<function ActorCriticPolicy._predict at 0x7faae40038c0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7faae4003950>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7faae40039e0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7faae4003a70>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7faae3fca9f0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651824017.6213288, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAPM9Db5DCVg/RIQ4vcSD0765Zei9bX3iPQAAAAAAAAAAAM4OPPZ8WboFKqW6F0GPtXsYUrp3zb05AACAPwAAgD+zVXg9KWh7ul3Mg7tFARs1fzOOOma6jLQAAIA/AACAPzN2X732TEq66F50PC9i3Dhfeby6+lzXNwAAgD8AAIA/5p5sPfa8E7pSXcA6Yna3NTYqMjoW8du5AACAPwAAgD/NZS8+YeiAO9hIgzvZIRs93nHxPNESBDwAAIA/AACAP+CSMT4KYXg8sL3GN/ZBBzYRwwM+h8YDtwAAgD8AAIA/TeITvlF0mz+2VIe+y164vh9Flb6QnZC9AAAAAAAAAAAaG+G9XFNqutmDozzMIYi04zs/OsSBQ7MAAIA/AACAPw1vzb3D9WC6w3GkupTzFbakEgM7KFG8OQAAgD8AAIA/jUX6PXiAvT5Io/69Oew2vqImC76mNNi8AAAAAAAAAAAzmia9KfgtuuJcnTsCpNg34W6Nuors/rUAAIA/AACAP8qFgT6L9DI/43ERPp6lwr76nRU+DlNSPQAAAAAAAAAAerorvvZsHrqqEMQ7cAyLPBqOPLwYR3Y9AACAPwAAgD96bHQ+xY6JPDUVwDpJdhI530wPPvtP67kAAIA/AACAP7PFrr3CGaY/lW5OvhpZsr7PMq29zl3UPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVZxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIIzDWNzBwZECUhpRSlIwBbJRN6AOMAXSUR0CA448jAzpHdX2UKGgGaAloD0MIoDiAft+//T+UhpRSlGgVS/BoFkdAgPXAjyFwk3V9lChoBmgJaA9DCH3KMVncj1dAlIaUUpRoFU3oA2gWR0CA/jreqJdjdX2UKGgGaAloD0MIAOFDiZYTVECUhpRSlGgVTegDaBZHQIEB+WGATZh1fZQoaAZoCWgPQwjM7snDwsViQJSGlFKUaBVN6ANoFkdAgQl6Lfk3j3V9lChoBmgJaA9DCCwujsrNuWFAlIaUUpRoFU3oA2gWR0CBEBUQTVUddX2UKGgGaAloD0MIdVd2weD7Y0CUhpRSlGgVTegDaBZHQIEvAc7yQPt1fZQoaAZoCWgPQwiE1sOXifozQJSGlFKUaBVL2mgWR0CBMsm78Nx3dX2UKGgGaAloD0MIbHak+s5vWkCUhpRSlGgVTegDaBZHQIE3NPDYRNB1fZQoaAZoCWgPQwhExM2pZGJXQJSGlFKUaBVN6ANoFkdAgUbCRW912nV9lChoBmgJaA9DCJGZC1weT15AlIaUUpRoFU3oA2gWR0CBSDNGmUGFdX2UKGgGaAloD0MIK6ORzyuexr+UhpRSlGgVS7loFkdAgUtJ1JUYK3V9lChoBmgJaA9DCF6+9WG9uSZAlIaUUpRoFUvoaBZHQIFUmz4UN8V1fZQoaAZoCWgPQwgvTRHg9FtRQJSGlFKUaBVN6ANoFkdAgVTnjZL7GnV9lChoBmgJaA9DCEXxKmubGF1AlIaUUpRoFU3oA2gWR0CBWHEcbR4RdX2UKGgGaAloD0MIHv8FggAXZECUhpRSlGgVTegDaBZHQIGarPQfIS11fZQoaAZoCWgPQwhNFYxK6jteQJSGlFKUaBVN6ANoFkdAgZ8dQoCuEHV9lChoBmgJaA9DCOpcUUoIKWFAlIaUUpRoFU3oA2gWR0CBn2W9lEqldX2UKGgGaAloD0MID/CkhcsIW0CUhpRSlGgVTegDaBZHQIGhhCx/ust1fZQoaAZoCWgPQwhCtcGJ6OdeQJSGlFKUaBVN6ANoFkdAgabpv5xionV9lChoBmgJaA9DCBMLfEW31k9AlIaUUpRoFUv7aBZHQIGsoQrc0tR1fZQoaAZoCWgPQwgpJQSr6vlAQJSGlFKUaBVLoWgWR0CBrdwiJO32dX2UKGgGaAloD0MIHHxhMlXPYkCUhpRSlGgVTegDaBZHQIG2zn3cpLF1fZQoaAZoCWgPQwiTUtDtJYlCQJSGlFKUaBVL4mgWR0CBu4RPoFFEdX2UKGgGaAloD0MIPdF14Yd+ZECUhpRSlGgVTegDaBZHQIG9xc5bQkZ1fZQoaAZoCWgPQwjxYmGIHC1kQJSGlFKUaBVN6ANoFkdAgcDMd92HL3V9lChoBmgJaA9DCJqZmZkZsWdAlIaUUpRoFU3oA2gWR0CBxpWMCLdfdX2UKGgGaAloD0MIoDiAft85ZECUhpRSlGgVTegDaBZHQIHtxF7Uoa11fZQoaAZoCWgPQwgzpmCNs7ZgQJSGlFKUaBVN6ANoFkdAgf1bzCk43nV9lChoBmgJaA9DCFlS7j5HrGBAlIaUUpRoFU3oA2gWR0CB/vKdQO4HdX2UKGgGaAloD0MIJclzfZ9RYkCUhpRSlGgVTegDaBZHQIICMnVoYel1fZQoaAZoCWgPQwjOb5hokKhlQJSGlFKUaBVN6ANoFkdAggwaTOgQH3V9lChoBmgJaA9DCKUyxRyEMGFAlIaUUpRoFU3oA2gWR0CCDG2RaHKwdX2UKGgGaAloD0MI3lm77UJnO0CUhpRSlGgVS+JoFkdAglZiExqO93V9lChoBmgJaA9DCAN5dvnWoWJAlIaUUpRoFU3oA2gWR0CCWxJCjUNKdX2UKGgGaAloD0MIrrzkf/IKYUCUhpRSlGgVTegDaBZHQIJbYcinpB51fZQoaAZoCWgPQwgzT64pkKEnwJSGlFKUaBVL02gWR0CCYpVZs9B9dX2UKGgGaAloD0MIaXIxBtbx5b+UhpRSlGgVS9xoFkdAgmOlxOtW/HV9lChoBmgJaA9DCLGGi9xThWFAlIaUUpRoFU3oA2gWR0CCZU2wV0tAdX2UKGgGaAloD0MI0hvuI7fjX0CUhpRSlGgVTegDaBZHQIJr4dMj/uN1fZQoaAZoCWgPQwhQxCKGHQRjQJSGlFKUaBVN6ANoFkdAgm1M2FWXC3V9lChoBmgJaA9DCH7Er1hD9WZAlIaUUpRoFU3oA2gWR0CCd395yEL6dX2UKGgGaAloD0MISS2UTE6ND0CUhpRSlGgVS/NoFkdAgnx9znzQNXV9lChoBmgJaA9DCI+NQLwuUmJAlIaUUpRoFU3oA2gWR0CCfL8stkFwdX2UKGgGaAloD0MIwQKYMvDkYUCUhpRSlGgVTegDaBZHQIJ+6eEqUeN1fZQoaAZoCWgPQwioVfSHZvYuQJSGlFKUaBVL6GgWR0CCgcnl4keIdX2UKGgGaAloD0MIzox+NJz7X0CUhpRSlGgVTegDaBZHQIKB8mQbMot1fZQoaAZoCWgPQwheEJGadsdbQJSGlFKUaBVN6ANoFkdAgodnTZxrBXV9lChoBmgJaA9DCNm0UgjkLjLAlIaUUpRoFUvYaBZHQIKXO2NNrTJ1fZQoaAZoCWgPQwglIvyLoL01QJSGlFKUaBVL62gWR0CCpDJHRTjvdX2UKGgGaAloD0MIEtxI2aJCYkCUhpRSlGgVTegDaBZHQIKr/YUWVNZ1fZQoaAZoCWgPQwhQG9XpQDhIQJSGlFKUaBVLzmgWR0CCs7uG9HtndX2UKGgGaAloD0MIuB0aFiNIYECUhpRSlGgVTegDaBZHQIK6QwsXizd1fZQoaAZoCWgPQwiOOjquxqFmQJSGlFKUaBVN6ANoFkdAgr6qjzqbB3V9lChoBmgJaA9DCJBOXfmsH2RAlIaUUpRoFU3oA2gWR0CC28X+l0o0dX2UKGgGaAloD0MINlfNc8S2ZECUhpRSlGgVTegDaBZHQIMWvKOktVd1fZQoaAZoCWgPQwgMsI9OXUhdQJSGlFKUaBVN6ANoFkdAgx4/h/Aj6nV9lChoBmgJaA9DCKvMlNbfg15AlIaUUpRoFU3oA2gWR0CDIO/X5FgEdX2UKGgGaAloD0MIpbxWQvdKZUCUhpRSlGgVTegDaBZHQIMn5mdy1eB1fZQoaAZoCWgPQwg9f9qoTstkQJSGlFKUaBVN6ANoFkdAgylhF/hESnV9lChoBmgJaA9DCNttF5rrAV9AlIaUUpRoFU3oA2gWR0CDNEdVea8ZdX2UKGgGaAloD0MIMsnIWdjYYUCUhpRSlGgVTegDaBZHQIM5YxDb8FZ1fZQoaAZoCWgPQwhslWBxONliQJSGlFKUaBVN6ANoFkdAgzmhv73wkXV9lChoBmgJaA9DCP/qcd9qDGFAlIaUUpRoFU3oA2gWR0CDPx8zhxYJdX2UKGgGaAloD0MIMsaH2cu6YECUhpRSlGgVTegDaBZHQIM/Tk+5e7d1fZQoaAZoCWgPQwhorz4e+tY/QJSGlFKUaBVL22gWR0CDVfUxVQyidX2UKGgGaAloD0MIvVMB9zwnLcCUhpRSlGgVS8xoFkdAg1piuMdcS3V9lChoBmgJaA9DCHVZTGw+tidAlIaUUpRoFUvhaBZHQINd78xbjcV1fZQoaAZoCWgPQwgZOKClq3xgQJSGlFKUaBVN6ANoFkdAg2cTOxB3R3V9lChoBmgJaA9DCFYL7DGRamRAlIaUUpRoFU3oA2gWR0CDbvxNqQA/dX2UKGgGaAloD0MIhlj9EYbTVUCUhpRSlGgVTegDaBZHQIN2boMa0hN1fZQoaAZoCWgPQwjhzoWR3l5kQJSGlFKUaBVN6ANoFkdAg3xxF7Uoa3V9lChoBmgJaA9DCKhwBKkUwWNAlIaUUpRoFU3oA2gWR0CDgKRGMGX5dX2UKGgGaAloD0MIPWTKh6CiJUCUhpRSlGgVS/9oFkdAg4EPNVzZH3V9lChoBmgJaA9DCF3cRgN4ZVxAlIaUUpRoFU3oA2gWR0CDmzoaDPGAdX2UKGgGaAloD0MIb2b0o+HVYUCUhpRSlGgVTegDaBZHQIOfhxLkCFN1fZQoaAZoCWgPQwjmQA+1bXhBQJSGlFKUaBVL62gWR0CDoEbSZ0CBdX2UKGgGaAloD0MI7X+AtWqsX0CUhpRSlGgVTegDaBZHQIPcr/Khcqx1fZQoaAZoCWgPQwjzGyYapLljQJSGlFKUaBVN6ANoFkdAg97/MW43FXV9lChoBmgJaA9DCPfHe9XK12VAlIaUUpRoFU3oA2gWR0CD5VfAKv3bdX2UKGgGaAloD0MIE/QXesRgYUCUhpRSlGgVTegDaBZHQIPmtvqC6H11fZQoaAZoCWgPQwgtliL5yoNhQJSGlFKUaBVN6ANoFkdAg/DKVhTfi3V9lChoBmgJaA9DCILF4cwvZWVAlIaUUpRoFU3oA2gWR0CD9a2NvOyFdX2UKGgGaAloD0MI3/lFCfprEsCUhpRSlGgVS8xoFkdAg/jpG4I8hnV9lChoBmgJaA9DCMYUrHE2/0NAlIaUUpRoFUuvaBZHQIQSgWnCO3l1fZQoaAZoCWgPQwikwthCEAxiQJSGlFKUaBVN6ANoFkdAhBUSFPBSDXV9lChoBmgJaA9DCML6P4f5Al9AlIaUUpRoFU3oA2gWR0CEGUd1+y7gdX2UKGgGaAloD0MI6zao/dbqZkCUhpRSlGgVTegDaBZHQIQk3epGWld1fZQoaAZoCWgPQwiYofFEkA5gQJSGlFKUaBVN6ANoFkdAhCxzd+G47XV9lChoBmgJaA9DCA3/6QYKHA1AlIaUUpRoFUvYaBZHQIQwgmCyyD91fZQoaAZoCWgPQwg9Kv7viOImQJSGlFKUaBVL22gWR0CEMzOmixmkdX2UKGgGaAloD0MIy2Wjc/4JY0CUhpRSlGgVTegDaBZHQIQzvYUWVNZ1fZQoaAZoCWgPQwg2dLM/UJJgQJSGlFKUaBVN6ANoFkdAhDljzAeq73V9lChoBmgJaA9DCCwoDMq0T2VAlIaUUpRoFU3oA2gWR0CEPVpX6qKhdX2UKGgGaAloD0MIMuiE0EH5SUCUhpRSlGgVS8NoFkdAhD37cO9WZXV9lChoBmgJaA9DCMb7cfvlox7AlIaUUpRoFUvgaBZHQIRL9MfzSTh1fZQoaAZoCWgPQwgzox8Np59RQJSGlFKUaBVNAAFoFkdAhFMmOdXkpHV9lChoBmgJaA9DCALU1LK1IWNAlIaUUpRoFU3oA2gWR0CEVzZFocrBdX2UKGgGaAloD0MIdJmaBO/yYkCUhpRSlGgVTegDaBZHQIRbG4smOVB1fZQoaAZoCWgPQwh8fhghvEZkQJSGlFKUaBVN6ANoFkdAhFvAeq7yx3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1bcf7103fd8e93eb1e4e7bc15ed472b68accda6c011e004f8e2426985b9a9297
|
3 |
+
size 248908
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 235.48564825664735, "std_reward": 22.568907513806945, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-06T08:39:05.822875"}
|