File size: 1,092 Bytes
77c109f
 
f22f918
 
 
 
 
77c109f
 
 
 
 
 
4acdd36
77c109f
4acdd36
77c109f
 
4acdd36
77c109f
4acdd36
77c109f
4acdd36
77c109f
4acdd36
77c109f
4acdd36
77c109f
4acdd36
77c109f
4acdd36
77c109f
4acdd36
77c109f
 
4acdd36
77c109f
4acdd36
77c109f
4acdd36
77c109f
4acdd36
77c109f
4acdd36
77c109f
4acdd36
77c109f
4acdd36
77c109f
 
4acdd36
77c109f
 
4acdd36
77c109f
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
---
license: cc-by-nc-sa-4.0
pipeline_tag: image-to-image
tags:
- pytorch
- super-resolution
---
---
@News 

## 2x-AnimeSharpV3

**Scale:** 2

**Architecture:** ESRGAN

**Links:** [Github Release](<https://github.com/Kim2091/Kim2091-Models/releases/tag/2x-AnimeSharpV3>)


**Author:** Kim2091

**License:** CC BY-NC-SA 4.0

**Purpose:** Anime

**Subject:** 

**Input Type:** Images

**Date:** 10-24-24

**Size:** 

**I/O Channels:** 3(RGB)->3(RGB)


**Dataset:** ModernAnimation1080_v3

**Dataset Size:** 2-3k

**OTF (on the fly augmentations):** No

**Pretrained Model:** 4xESRGAN

**Iterations:** 140k

**Batch Size:** 8

**GT Size:** 64-128


**Description:** I gave up on having multiple architectures. This release is ESRGAN only, and provides superior quality compared to AnimeSharpV2 in nearly every scenario. It has most of the advantages of the old V2 Sharp models, while not having issues with depth of field. 


__Comparisons:__ <https://slow.pics/c/A2BRSa0U>


![image/png](https://cdn-uploads.huggingface.co/production/uploads/64987486f436b85fddbdc359/ihjsIOB2G5GDdiCrdpygG.png)