File size: 2,674 Bytes
05ec89a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83

---
tags:
- bertopic
library_name: bertopic
pipeline_tag: text-classification
---

# cnn_dailymail_55555_3000_1500_test

This is a [BERTopic](https://github.com/MaartenGr/BERTopic) model. 
BERTopic is a flexible and modular topic modeling framework that allows for the generation of easily interpretable topics from large datasets. 

## Usage 

To use this model, please install BERTopic:

```
pip install -U bertopic
```

You can use the model as follows:

```python
from bertopic import BERTopic
topic_model = BERTopic.load("KingKazma/cnn_dailymail_55555_3000_1500_test")

topic_model.get_topic_info()
```

## Topic overview

* Number of topics: 15
* Number of training documents: 1500

<details>
  <summary>Click here for an overview of all topics.</summary>
  
  | Topic ID | Topic Keywords | Topic Frequency | Label | 
|----------|----------------|-----------------|-------| 
| -1 | season - league - player - club - game | 13 | -1_season_league_player_club | 
| 0 | said - one - people - year - also | 121 | 0_said_one_people_year | 
| 1 | madrid - real - barcelona - league - atletico | 1080 | 1_madrid_real_barcelona_league | 
| 2 | sterling - liverpool - league - club - season | 41 | 2_sterling_liverpool_league_club | 
| 3 | try - game - minute - wolves - back | 35 | 3_try_game_minute_wolves | 
| 4 | chelsea - league - hazard - premier - mourinho | 27 | 4_chelsea_league_hazard_premier | 
| 5 | lady - race - djokovic - victory - oxford | 24 | 5_lady_race_djokovic_victory | 
| 6 | england - cricket - test - wicket - pietersen | 24 | 6_england_cricket_test_wicket | 
| 7 | villa - sherwood - liverpool - cup - fa | 23 | 7_villa_sherwood_liverpool_cup | 
| 8 | united - manchester - van - gaal - carrick | 23 | 8_united_manchester_van_gaal | 
| 9 | fight - mayweather - pacquiao - ticket - manny | 23 | 9_fight_mayweather_pacquiao_ticket | 
| 10 | bayern - guardiola - munich - porto - ribery | 21 | 10_bayern_guardiola_munich_porto | 
| 11 | masters - woods - augusta - mcilroy - shot | 16 | 11_masters_woods_augusta_mcilroy | 
| 12 | rangers - scottish - game - celtic - hearts | 15 | 12_rangers_scottish_game_celtic | 
| 13 | race - hamilton - rosberg - car - ferrari | 14 | 13_race_hamilton_rosberg_car |
  
</details>

## Training hyperparameters

* calculate_probabilities: True
* language: english
* low_memory: False
* min_topic_size: 10
* n_gram_range: (1, 1)
* nr_topics: None
* seed_topic_list: None
* top_n_words: 10
* verbose: False

## Framework versions

* Numpy: 1.22.4
* HDBSCAN: 0.8.33
* UMAP: 0.5.3
* Pandas: 1.5.3
* Scikit-Learn: 1.2.2
* Sentence-transformers: 2.2.2
* Transformers: 4.31.0
* Numba: 0.56.4
* Plotly: 5.13.1
* Python: 3.10.6