File size: 29,405 Bytes
1418072 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 |
---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:164
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
base_model: Snowflake/snowflake-arctic-embed-l
widget:
- source_sentence: What significant multi-modal models were released in 2024
sentences:
- 'In 2024, almost every significant model vendor released multi-modal models. We
saw the Claude 3 series from Anthropic in March, Gemini 1.5 Pro in April (images,
audio and video), then September brought Qwen2-VL and Mistral’s Pixtral 12B and
Meta’s Llama 3.2 11B and 90B vision models. We got audio input and output from
OpenAI in October, then November saw SmolVLM from Hugging Face and December saw
image and video models from Amazon Nova.
In October I upgraded my LLM CLI tool to support multi-modal models via attachments.
It now has plugins for a whole collection of different vision models.'
- 'When @v0 first came out we were paranoid about protecting the prompt with all
kinds of pre and post processing complexity.
We completely pivoted to let it rip. A prompt without the evals, models, and especially
UX is like getting a broken ASML machine without a manual'
- 'Terminology aside, I remain skeptical as to their utility based, once again,
on the challenge of gullibility. LLMs believe anything you tell them. Any systems
that attempts to make meaningful decisions on your behalf will run into the same
roadblock: how good is a travel agent, or a digital assistant, or even a research
tool if it can’t distinguish truth from fiction?
Just the other day Google Search was caught serving up an entirely fake description
of the non-existant movie “Encanto 2”. It turned out to be summarizing an imagined
movie listing from a fan fiction wiki.'
- source_sentence: What is the advantage of a 64GB Mac for running models
sentences:
- 'The boring yet crucial secret behind good system prompts is test-driven development.
You don’t write down a system prompt and find ways to test it. You write down
tests and find a system prompt that passes them.
It’s become abundantly clear over the course of 2024 that writing good automated
evals for LLM-powered systems is the skill that’s most needed to build useful
applications on top of these models. If you have a strong eval suite you can adopt
new models faster, iterate better and build more reliable and useful product features
than your competition.
Vercel’s Malte Ubl:'
- 'On paper, a 64GB Mac should be a great machine for running models due to the
way the CPU and GPU can share the same memory. In practice, many models are released
as model weights and libraries that reward NVIDIA’s CUDA over other platforms.
The llama.cpp ecosystem helped a lot here, but the real breakthrough has been
Apple’s MLX library, “an array framework for Apple Silicon”. It’s fantastic.
Apple’s mlx-lm Python library supports running a wide range of MLX-compatible
models on my Mac, with excellent performance. mlx-community on Hugging Face offers
more than 1,000 models that have been converted to the necessary format.'
- 'OpenAI made GPT-4o free for all users in May, and Claude 3.5 Sonnet was freely
available from its launch in June. This was a momentus change, because for the
previous year free users had mostly been restricted to GPT-3.5 level models, meaning
new users got a very inaccurate mental model of what a capable LLM could actually
do.
That era appears to have ended, likely permanently, with OpenAI’s launch of ChatGPT
Pro. This $200/month subscription service is the only way to access their most
capable model, o1 Pro.
Since the trick behind the o1 series (and the future models it will undoubtedly
inspire) is to expend more compute time to get better results, I don’t think those
days of free access to the best available models are likely to return.'
- source_sentence: What is the main innovation discussed in the context regarding
model scaling?
sentences:
- 'The biggest innovation here is that it opens up a new way to scale a model: instead
of improving model performance purely through additional compute at training time,
models can now take on harder problems by spending more compute on inference.
The sequel to o1, o3 (they skipped “o2” for European trademark reasons) was announced
on 20th December with an impressive result against the ARC-AGI benchmark, albeit
one that likely involved more than $1,000,000 of compute time expense!
o3 is expected to ship in January. I doubt many people have real-world problems
that would benefit from that level of compute expenditure—I certainly don’t!—but
it appears to be a genuine next step in LLM architecture for taking on much harder
problems.'
- Meanwhile, it’s increasingly common for end users to develop wildly inaccurate
mental models of how these things work and what they are capable of. I’ve seen
so many examples of people trying to win an argument with a screenshot from ChatGPT—an
inherently ludicrous proposition, given the inherent unreliability of these models
crossed with the fact that you can get them to say anything if you prompt them
right.
- 'I think this means that, as individual users, we don’t need to feel any guilt
at all for the energy consumed by the vast majority of our prompts. The impact
is likely neglible compared to driving a car down the street or maybe even watching
a video on YouTube.
Likewise, training. DeepSeek v3 training for less than $6m is a fantastic sign
that training costs can and should continue to drop.
For less efficient models I find it useful to compare their energy usage to commercial
flights. The largest Llama 3 model cost about the same as a single digit number
of fully loaded passenger flights from New York to London. That’s certainly not
nothing, but once trained that model can be used by millions of people at no extra
training cost.'
- source_sentence: What new feature was introduced in ChatGPT's voice mode in December?
sentences:
- 'Nothing yet from Anthropic or Meta but I would be very surprised if they don’t
have their own inference-scaling models in the works. Meta published a relevant
paper Training Large Language Models to Reason in a Continuous Latent Space in
December.
Was the best currently available LLM trained in China for less than $6m?
Not quite, but almost! It does make for a great attention-grabbing headline.
The big news to end the year was the release of DeepSeek v3—dropped on Hugging
Face on Christmas Day without so much as a README file, then followed by documentation
and a paper the day after that.'
- 'Then in December, the Chatbot Arena team introduced a whole new leaderboard for
this feature, driven by users building the same interactive app twice with two
different models and voting on the answer. Hard to come up with a more convincing
argument that this feature is now a commodity that can be effectively implemented
against all of the leading models.
I’ve been tinkering with a version of this myself for my Datasette project, with
the goal of letting users use prompts to build and iterate on custom widgets and
data visualizations against their own data. I also figured out a similar pattern
for writing one-shot Python programs, enabled by uv.'
- The most recent twist, again from December (December was a lot) is live video.
ChatGPT voice mode now provides the option to share your camera feed with the
model and talk about what you can see in real time. Google Gemini have a preview
of the same feature, which they managed to ship the day before ChatGPT did.
- source_sentence: Why is it important to learn how to work with unreliable technology
like LLMs?
sentences:
- 'Longer inputs dramatically increase the scope of problems that can be solved
with an LLM: you can now throw in an entire book and ask questions about its contents,
but more importantly you can feed in a lot of example code to help the model correctly
solve a coding problem. LLM use-cases that involve long inputs are far more interesting
to me than short prompts that rely purely on the information already baked into
the model weights. Many of my tools were built using this pattern.'
- 'There’s a flipside to this too: a lot of better informed people have sworn off
LLMs entirely because they can’t see how anyone could benefit from a tool with
so many flaws. The key skill in getting the most out of LLMs is learning to work
with tech that is both inherently unreliable and incredibly powerful at the same
time. This is a decidedly non-obvious skill to acquire!
There is so much space for helpful education content here, but we need to do do
a lot better than outsourcing it all to AI grifters with bombastic Twitter threads.
Knowledge is incredibly unevenly distributed
Most people have heard of ChatGPT by now. How many have heard of Claude?'
- 'I think people who complain that LLM improvement has slowed are often missing
the enormous advances in these multi-modal models. Being able to run prompts against
images (and audio and video) is a fascinating new way to apply these models.
Voice and live camera mode are science fiction come to life
The audio and live video modes that have started to emerge deserve a special mention.
The ability to talk to ChatGPT first arrived in September 2023, but it was mostly
an illusion: OpenAI used their excellent Whisper speech-to-text model and a new
text-to-speech model (creatively named tts-1) to enable conversations with the
ChatGPT mobile apps, but the actual model just saw text.'
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
model-index:
- name: SentenceTransformer based on Snowflake/snowflake-arctic-embed-l
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: Unknown
type: unknown
metrics:
- type: cosine_accuracy@1
value: 0.875
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.9583333333333334
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 1.0
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 1.0
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.875
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.3194444444444444
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.20000000000000004
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.10000000000000002
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.875
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.9583333333333334
name: Cosine Recall@3
- type: cosine_recall@5
value: 1.0
name: Cosine Recall@5
- type: cosine_recall@10
value: 1.0
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.9455223360506796
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.9270833333333334
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.9270833333333334
name: Cosine Map@100
---
# SentenceTransformer based on Snowflake/snowflake-arctic-embed-l
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Snowflake/snowflake-arctic-embed-l](https://huggingface.co/Snowflake/snowflake-arctic-embed-l). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [Snowflake/snowflake-arctic-embed-l](https://huggingface.co/Snowflake/snowflake-arctic-embed-l) <!-- at revision d8fb21ca8d905d2832ee8b96c894d3298964346b -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 1024 dimensions
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("KireetiKunam/legal-ft-2")
# Run inference
sentences = [
'Why is it important to learn how to work with unreliable technology like LLMs?',
'There’s a flipside to this too: a lot of better informed people have sworn off LLMs entirely because they can’t see how anyone could benefit from a tool with so many flaws. The key skill in getting the most out of LLMs is learning to work with tech that is both inherently unreliable and incredibly powerful at the same time. This is a decidedly non-obvious skill to acquire!\nThere is so much space for helpful education content here, but we need to do do a lot better than outsourcing it all to AI grifters with bombastic Twitter threads.\nKnowledge is incredibly unevenly distributed\nMost people have heard of ChatGPT by now. How many have heard of Claude?',
'I think people who complain that LLM improvement has slowed are often missing the enormous advances in these multi-modal models. Being able to run prompts against images (and audio and video) is a fascinating new way to apply these models.\nVoice and live camera mode are science fiction come to life\nThe audio and live video modes that have started to emerge deserve a special mention.\nThe ability to talk to ChatGPT first arrived in September 2023, but it was mostly an illusion: OpenAI used their excellent Whisper speech-to-text model and a new text-to-speech model (creatively named tts-1) to enable conversations with the ChatGPT mobile apps, but the actual model just saw text.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Information Retrieval
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.875 |
| cosine_accuracy@3 | 0.9583 |
| cosine_accuracy@5 | 1.0 |
| cosine_accuracy@10 | 1.0 |
| cosine_precision@1 | 0.875 |
| cosine_precision@3 | 0.3194 |
| cosine_precision@5 | 0.2 |
| cosine_precision@10 | 0.1 |
| cosine_recall@1 | 0.875 |
| cosine_recall@3 | 0.9583 |
| cosine_recall@5 | 1.0 |
| cosine_recall@10 | 1.0 |
| **cosine_ndcg@10** | **0.9455** |
| cosine_mrr@10 | 0.9271 |
| cosine_map@100 | 0.9271 |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 164 training samples
* Columns: <code>sentence_0</code> and <code>sentence_1</code>
* Approximate statistics based on the first 164 samples:
| | sentence_0 | sentence_1 |
|:--------|:----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 3 tokens</li><li>mean: 15.43 tokens</li><li>max: 28 tokens</li></ul> | <ul><li>min: 43 tokens</li><li>mean: 130.65 tokens</li><li>max: 204 tokens</li></ul> |
* Samples:
| sentence_0 | sentence_1 |
|:----------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>What key themes were identified in the review of LLMs in 2024?</code> | <code>Things we learned about LLMs in 2024<br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br>Simon Willison’s Weblog<br>Subscribe<br><br><br><br><br><br><br>Things we learned about LLMs in 2024<br>31st December 2024<br>A lot has happened in the world of Large Language Models over the course of 2024. Here’s a review of things we figured out about the field in the past twelve months, plus my attempt at identifying key themes and pivotal moments.<br>This is a sequel to my review of 2023.<br>In this article:</code> |
| <code>What pivotal moments in the field of LLMs were highlighted in the article?</code> | <code>Things we learned about LLMs in 2024<br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br>Simon Willison’s Weblog<br>Subscribe<br><br><br><br><br><br><br>Things we learned about LLMs in 2024<br>31st December 2024<br>A lot has happened in the world of Large Language Models over the course of 2024. Here’s a review of things we figured out about the field in the past twelve months, plus my attempt at identifying key themes and pivotal moments.<br>This is a sequel to my review of 2023.<br>In this article:</code> |
| <code>What advancements have been made in multimodal vision technology?</code> | <code>The GPT-4 barrier was comprehensively broken<br>Some of those GPT-4 models run on my laptop<br>LLM prices crashed, thanks to competition and increased efficiency<br>Multimodal vision is common, audio and video are starting to emerge<br>Voice and live camera mode are science fiction come to life<br>Prompt driven app generation is a commodity already<br>Universal access to the best models lasted for just a few short months<br>“Agents” still haven’t really happened yet<br>Evals really matter<br>Apple Intelligence is bad, Apple’s MLX library is excellent<br>The rise of inference-scaling “reasoning” models<br>Was the best currently available LLM trained in China for less than $6m?<br>The environmental impact got better<br>The environmental impact got much, much worse</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
```json
{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 10
- `per_device_eval_batch_size`: 10
- `num_train_epochs`: 10
- `multi_dataset_batch_sampler`: round_robin
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 10
- `per_device_eval_batch_size`: 10
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1
- `num_train_epochs`: 10
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.0
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: round_robin
</details>
### Training Logs
| Epoch | Step | cosine_ndcg@10 |
|:------:|:----:|:--------------:|
| 1.0 | 17 | 0.9382 |
| 2.0 | 34 | 0.9161 |
| 2.9412 | 50 | 0.9270 |
| 3.0 | 51 | 0.9270 |
| 4.0 | 68 | 0.9283 |
| 5.0 | 85 | 0.9437 |
| 5.8824 | 100 | 0.9455 |
| 6.0 | 102 | 0.9455 |
| 7.0 | 119 | 0.9455 |
| 8.0 | 136 | 0.9455 |
| 8.8235 | 150 | 0.9455 |
| 9.0 | 153 | 0.9455 |
| 10.0 | 170 | 0.9455 |
### Framework Versions
- Python: 3.11.11
- Sentence Transformers: 3.4.1
- Transformers: 4.48.3
- PyTorch: 2.5.1+cu124
- Accelerate: 1.3.0
- Datasets: 3.3.1
- Tokenizers: 0.21.0
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
```
#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |