Kkonjeong commited on
Commit
11cc159
·
verified ·
1 Parent(s): c6b1cd7

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +92 -111
README.md CHANGED
@@ -1,199 +1,180 @@
 
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
 
12
  ## Model Details
13
 
14
  ### Model Description
15
 
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
- ### Model Sources [optional]
29
 
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
 
36
  ## Uses
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
  ### Direct Use
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
 
46
  ### Downstream Use [optional]
47
 
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
 
52
  ### Out-of-Scope Use
53
 
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
 
58
  ## Bias, Risks, and Limitations
59
 
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
  ### Recommendations
65
 
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
 
70
  ## How to Get Started with the Model
71
 
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
75
 
76
  ## Training Details
77
 
78
  ### Training Data
79
 
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
 
84
  ### Training Procedure
85
 
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
 
 
92
 
93
  #### Training Hyperparameters
94
 
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
 
103
  ## Evaluation
104
 
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
  ### Testing Data, Factors & Metrics
108
 
109
  #### Testing Data
110
 
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
 
121
  #### Metrics
122
 
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
 
127
  ### Results
128
 
129
- [More Information Needed]
130
 
131
  #### Summary
132
 
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
 
141
  ## Environmental Impact
142
 
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
 
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
 
153
- ## Technical Specifications [optional]
154
 
155
  ### Model Architecture and Objective
156
 
157
- [More Information Needed]
158
 
159
  ### Compute Infrastructure
160
 
161
- [More Information Needed]
162
-
163
  #### Hardware
164
 
165
- [More Information Needed]
166
 
167
  #### Software
168
 
169
- [More Information Needed]
 
170
 
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
 
175
  **BibTeX:**
176
 
177
- [More Information Needed]
 
 
 
 
 
 
 
 
178
 
179
  **APA:**
180
 
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
 
193
  ## Model Card Authors [optional]
194
 
195
- [More Information Needed]
196
 
197
  ## Model Card Contact
198
 
199
- [More Information Needed]
 
1
+
2
  ---
3
  library_name: transformers
4
+ datasets:
5
+ - kresnik/zeroth_korean
6
+ language:
7
+ - ko
8
+ metrics:
9
+ - cer
10
  ---
11
 
12
+ # Model Card for wav2vec2-base-korean
 
 
 
 
13
 
14
  ## Model Details
15
 
16
  ### Model Description
17
 
18
+ This model is a fine-tuned version of Facebook's wav2vec2-base model, adapted for Korean language recognition using the Zeroth-Korean dataset. The model has been trained to transcribe Korean speech into text, specifically utilizing the unique jamo characters of the Korean language.
 
 
19
 
20
+ - **Developed by:** [jeonghyeon Park, Jaeyoung Kim]
21
+ - **Model type:** Speech-to-Text
22
+ - **Language(s) (NLP):** Korean
23
+ - **License:** Apache 2.0
24
+ - **Finetuned from model [optional]:** facebook/wav2vec2-base
 
 
25
 
26
+ ### Model Sources
27
 
28
+ - **Repository:** [github.com/KkonJJ/wav2vec2-base-korean]
 
 
 
 
29
 
30
  ## Uses
31
 
 
 
32
  ### Direct Use
33
 
34
+ The model can be directly used for transcribing Korean speech to text without additional fine-tuning. It is particularly useful for applications requiring accurate Korean language recognition such as voice assistants, transcription services, and language learning tools.
 
 
35
 
36
  ### Downstream Use [optional]
37
 
38
+ This model can be integrated into larger systems that require speech recognition capabilities, such as automated customer service, voice-controlled applications, and more.
 
 
39
 
40
  ### Out-of-Scope Use
41
 
42
+ This model is not suitable for recognizing languages other than Korean or for tasks that require understanding context beyond the transcription of spoken Korean.
 
 
43
 
44
  ## Bias, Risks, and Limitations
45
 
 
 
 
 
46
  ### Recommendations
47
 
48
+ Users should be aware of the limitations of the model, including potential biases in the training data which may affect the accuracy for certain dialects or speakers. It is recommended to evaluate the model's performance on a representative sample of the intended application domain.
 
 
49
 
50
  ## How to Get Started with the Model
51
 
52
+ To get started with the model, use the code below:
53
+
54
+ ```python
55
+ !pip install transformers[torch] accelerate -U
56
+ !pip install datasets torchaudio -U
57
+ !pip install jiwer jamo
58
+ !pip install tensorboard
59
+
60
+ import torch
61
+ from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
62
+ import torchaudio
63
+ from jamo import h2j, j2hcj
64
+
65
+ model_name = "Kkonjeong/wav2vec2-base-korean"
66
+ model = Wav2Vec2ForCTC.from_pretrained(model_name)
67
+ processor = Wav2Vec2Processor.from_pretrained(model_name)
68
+
69
+ model.to("cuda")
70
+ model.eval()
71
+
72
+ def load_and_preprocess_audio(file_path):
73
+ speech_array, sampling_rate = torchaudio.load(file_path)
74
+ if sampling_rate != 16000:
75
+ resampler = torchaudio.transforms.Resample(sampling_rate, 16000)
76
+ speech_array = resampler(speech_array)
77
+ input_values = processor(speech_array.squeeze().numpy(), sampling_rate=16000).input_values[0]
78
+ return input_values
79
+
80
+ def predict(file_path):
81
+ input_values = load_and_preprocess_audio(file_path)
82
+ input_values = torch.tensor(input_values).unsqueeze(0).to("cuda")
83
+ with torch.no_grad():
84
+ logits = model(input_values).logits
85
+ predicted_ids = torch.argmax(logits, dim=-1)
86
+ transcription = processor.batch_decode(predicted_ids)[0]
87
+ return transcription
88
+
89
+ audio_file_path = "your_audio_file.wav"
90
+ transcription = predict(audio_file_path)
91
+ print("Transcription:", transcription)
92
+ ```
93
 
94
  ## Training Details
95
 
96
  ### Training Data
97
 
98
+ The model was trained using the Zeroth-Korean dataset, a collection of Korean speech data. This dataset includes audio recordings and their corresponding transcriptions.
 
 
99
 
100
  ### Training Procedure
101
 
102
+ #### Preprocessing
 
 
 
 
103
 
104
+ Special characters were removed from the transcriptions, and the text was converted to jamo characters to better align with the Korean language's phonetic structure.
105
 
106
  #### Training Hyperparameters
107
 
108
+ - **Training regime:** Mixed precision (fp16)
109
+ - **Batch size:** 32
110
+ - **Learning rate:** 1e-4
111
+ - **Number of epochs:** 10
 
 
 
112
 
113
  ## Evaluation
114
 
 
 
115
  ### Testing Data, Factors & Metrics
116
 
117
  #### Testing Data
118
 
119
+ The model was evaluated using the test split of the Zeroth-Korean dataset.
 
 
 
 
 
 
 
 
120
 
121
  #### Metrics
122
 
123
+ The primary evaluation metric used was the Character Error Rate (CER), which measures the percentage of characters that are incorrect in the transcription compared to the reference text.
 
 
124
 
125
  ### Results
126
 
127
+ - **Final CER:** 0.073
128
 
129
  #### Summary
130
 
131
+ The model achieved a CER of 7.3%, indicating good performance on the Zeroth-Korean dataset.
 
 
 
 
 
 
132
 
133
  ## Environmental Impact
134
 
135
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute).
 
 
136
 
137
+ - **Hardware Type:** NVIDIA A100
138
+ - **Hours used:** Approximately 8hours
 
 
 
139
 
140
+ ## Technical Specifications
141
 
142
  ### Model Architecture and Objective
143
 
144
+ The model architecture is based on wav2vec2.0, designed to convert audio input into text output by modeling the phonetic structure of speech.
145
 
146
  ### Compute Infrastructure
147
 
 
 
148
  #### Hardware
149
 
150
+ - **GPUs:** NVIDIA A100
151
 
152
  #### Software
153
 
154
+ - **Framework:** PyTorch
155
+ - **Libraries:** Transformers, Datasets, Torchaudio, Jiwer, Jamo
156
 
 
 
 
157
 
158
  **BibTeX:**
159
 
160
+ ```bibtex
161
+ @misc{your_bibtex_key,
162
+ author = {Your Name},
163
+ title = {wav2vec2-base-korean},
164
+ year = {2024},
165
+ publisher = {Hugging Face},
166
+ note = {https://huggingface.co/Kkonjeong/wav2vec2-base-korean}
167
+ }
168
+ ```
169
 
170
  **APA:**
171
 
172
+ Your Name. (2024). wav2vec2-base-korean. Hugging Face. https://huggingface.co/Kkonjeong/wav2vec2-base-korean
 
 
 
 
 
 
 
 
 
 
173
 
174
  ## Model Card Authors [optional]
175
 
176
+ [Your Name]
177
 
178
  ## Model Card Contact
179
 
180
+ For more information, contact [shshjhjh4455@gmail.com, kbs00717@gmail.com].