--- tags: - merge - mergekit - lazymergekit - Equall/Saul-7B-Instruct-v1 - timpal0l/Mistral-7B-v0.1-flashback-v2-instruct base_model: - Equall/Saul-7B-Instruct-v1 - timpal0l/Mistral-7B-v0.1-flashback-v2-instruct --- # BellmanSaul-flashback-dareties BellmanSaul-flashback-dareties is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [Equall/Saul-7B-Instruct-v1](https://huggingface.co/Equall/Saul-7B-Instruct-v1) * [timpal0l/Mistral-7B-v0.1-flashback-v2-instruct](https://huggingface.co/timpal0l/Mistral-7B-v0.1-flashback-v2-instruct) ## 🧩 Configuration ```yaml models: - model: neph1/bellman-7b-mistral-instruct-v0.2 # No parameters necessary for base model - model: Equall/Saul-7B-Instruct-v1 parameters: density: 0.53 weight: 0.7 - model: timpal0l/Mistral-7B-v0.1-flashback-v2-instruct parameters: density: 0.53 weight: 0.3 merge_method: dare_ties base_model: neph1/bellman-7b-mistral-instruct-v0.2 parameters: int8_mask: true dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "Knobi3/BellmanSaul-flashback-dareties" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```