Walter-Falcon-1B / configuration_falcon.py
KnutJaegersberg's picture
Upload 12 files
9cc3028
# coding=utf-8
# Copyright 2023 the Falcon authors and HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Falcon configuration"""
from transformers.configuration_utils import PretrainedConfig
from transformers.utils import logging
logger = logging.get_logger(__name__)
FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP = {
"tiiuae/falcon-40b": "https://huggingface.co/tiiuae/falcon-40b/resolve/main/config.json",
"tiiuae/falcon-7b": "https://huggingface.co/tiiuae/falcon-7b/resolve/main/config.json",
}
class FalconConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`FalconModel`]. It is used to instantiate a Falcon
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the
[tiiuae/falcon-7b](https://huggingface.co/tiiuae/falcon-7b) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 65024):
Vocabulary size of the Falcon model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`FalconModel`]
hidden_size (`int`, *optional*, defaults to 4544):
Dimension of the hidden representations.
num_hidden_layers (`int`, *optional*, defaults to 32):
Number of hidden layers in the Transformer decoder.
num_attention_heads (`int`, *optional*, defaults to 71):
Number of attention heads for each attention layer in the Transformer encoder.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
use_cache (`bool`, *optional*, defaults to `True`):
Whether the model should return the last key/values attentions (not used by all models). Only relevant if
`config.is_decoder=True`.
layer_norm_epsilon (`float`, *optional*, defaults to 1e-5):
The epsilon used by the layer normalization layers.
hidden_dropout (`float`, *optional*, defaults to 0.0):
The dropout probability for MLP layers.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout probability for attention layers.
num_kv_heads (`int`, *optional*):
Number of key-value heads to use per attention layer. If unset, defaults to the same value as
`num_attention_heads`.
alibi (`bool`, *optional*, defaults to `False`):
Whether to use ALiBi positional biases during self-attention.
new_decoder_architecture (`bool`, *optional*, defaults to `False`):
Whether to use the new (Falcon-40B) decoder architecture. If `True`, the `multi_query` and `parallel_attn`
arguments are ignored, as the new decoder always uses parallel attention.
multi_query (`bool`, *optional*, defaults to `True`):
Whether to use multi-query attention in the decoder. Ignored when `new_decoder_architecture` is `True`.
parallel_attn (`bool`, *optional*, defaults to `True`):
Whether to compute attention in parallel with the feedforward layer. If False, they are consecutive
instead, as in the original Transformer architecture. Ignored when `new_decoder_architecture` is `True`.
bias (`bool`, *optional*, defaults to `False`):
Whether to use bias on Linear layers.
bos_token_id (`int`, *optional*, defaults to 11):
The id of the "beginning-of-sequence" token.
eos_token_id (`int`, *optional*, defaults to 11):
The id of the "end-of-sequence" token.
Example:
```python
>>> from transformers import FalconModel, FalconConfig
>>> # Initializing a small (2-layer) Falcon configuration
>>> configuration = FalconConfig(num_hidden_layers=2)
>>> # Initializing a model from the small configuration
>>> model = FalconModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "falcon"
keys_to_ignore_at_inference = ["past_key_values"]
def __init__(
self,
vocab_size=65024,
hidden_size=4544,
num_hidden_layers=32,
num_attention_heads=71,
layer_norm_epsilon=1e-5,
initializer_range=0.02,
use_cache=True,
hidden_dropout=0.0,
attention_dropout=0.0,
num_kv_heads=None,
alibi=False,
new_decoder_architecture=False,
multi_query=True,
parallel_attn=True,
bias=False,
bos_token_id=11,
eos_token_id=11,
**kwargs,
):
self.vocab_size = vocab_size
# Backward compatibility with n_embed kwarg
n_embed = kwargs.pop("n_embed", None)
self.hidden_size = hidden_size if n_embed is None else n_embed
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.layer_norm_epsilon = layer_norm_epsilon
self.initializer_range = initializer_range
self.use_cache = use_cache
self.hidden_dropout = hidden_dropout
self.attention_dropout = attention_dropout
self.bos_token_id = bos_token_id
self.eos_token_id = eos_token_id
self.num_kv_heads = num_attention_heads if num_kv_heads is None else num_kv_heads
self.alibi = alibi
self.new_decoder_architecture = new_decoder_architecture
self.multi_query = multi_query # Ignored when new_decoder_architecture is True
self.parallel_attn = parallel_attn
self.bias = bias
super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
@property
def head_dim(self):
return self.hidden_size // self.num_attention_heads
@property
def rotary(self):
return not self.alibi