--- tags: - text-generation --- # Model Card for GPT-J-6B-Skein # Model Details ## Model Description - **Developed by:** KoboldAI - **Shared by [Optional]:** More information needed - **Model type:** Text Generation - **Language(s) (NLP):** More information needed - **License:** More information needed - **Related Models:** [GPT-J 6B](https://huggingface.co/EleutherAI/gpt-j-6B?text=My+name+is+Mariama%2C+my+favorite) - **Parent Model:** GPT-J - **Resources for more information:** - [GitHub Repo](https://github.com/kingoflolz/mesh-transformer-jax) - [Associated Model Doc](https://huggingface.co/docs/transformers/main/en/model_doc/gptj#transformers.GPTJForCausalLM) # Uses ## Direct Use This model can be used for the task of text generation ## Downstream Use [Optional] More information needed ## Out-of-Scope Use The model should not be used to intentionally create hostile or alienating environments for people. # Bias, Risks, and Limitations The core functionality of GPT-J is taking a string of text and predicting the next token. While language models are widely used for tasks other than this, there are a lot of unknowns with this work. When prompting GPT-J it is important to remember that the statistically most likely next token is often not the token that produces the most "accurate" text. Never depend upon GPT-J to produce factually accurate output. GPT-J was trained on the Pile, a dataset known to contain profanity, lewd, and otherwise abrasive language. Depending upon use case GPT-J may produce socially unacceptable text. See Sections 5 and 6 of the Pile paper for a more detailed analysis of the biases in the Pile. As with all language models, it is hard to predict in advance how GPT-J will respond to particular prompts and offensive content may occur without warning. We recommend having a human curate or filter the outputs before releasing them, both to censor undesirable content and to improve the quality of the results. See the [GPT-J 6B model card](https://huggingface.co/EleutherAI/gpt-j-6B?text=My+name+is+Mariama%2C+my+favorite) for more information. ## Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. # Training Details ## Training Data More information needed ## Training Procedure ### Preprocessing More information needed ### Speeds, Sizes, Times More information needed # Evaluation ## Testing Data, Factors & Metrics ### Testing Data More information needed ### Factors ### Metrics More information needed ## Results More information needed # Model Examination More information needed # Environmental Impact Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** More information needed - **Hours used:** More information needed - **Cloud Provider:** More information needed - **Compute Region:** More information needed - **Carbon Emitted:** More information needed # Technical Specifications [optional] ## Model Architecture and Objective More information needed ## Compute Infrastructure More information needed ### Hardware More information needed ### Software More information needed # Citation **BibTeX:** ``` @misc{mesh-transformer-jax, author = {Wang, Ben}, title = {{Mesh-Transformer-JAX: Model-Parallel Implementation of Transformer Language Model with JAX}}, howpublished = {\url{https://github.com/kingoflolz/mesh-transformer-jax}}, year = 2021, month = May } ``` # Glossary [optional] More information needed # More Information [optional] More information needed # Model Card Authors [optional] KoboldAI in collaboration with Ezi Ozoani and the Hugging Face team # Model Card Contact More information needed # How to Get Started with the Model Use the code below to get started with the model.
Click to expand ```python from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("KoboldAI/GPT-J-6B-Skein") model = AutoModelForCausalLM.from_pretrained("KoboldAI/GPT-J-6B-Skein") ```